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Numerical simulation of double-diffusive convection in a rectangular box

Y. Young and R. Rosner
Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 13 October 1998!

We directly simulate incompressible, double-diffusive convection in a vertical slot using a two-dimensional
pseudospectral code. Incompressibility is achieved in our code by the consistent implementation of the tau
correction. We find that layer dynamics depends on the particulars of the imposed boundary conditions for the
temperature at the sidewalls and the density stratification ratio~the relative strength of the stabilizing solute
gradient to the destabilizing horizontal thermal difference!. We demonstrate the effects of the density stratifi-
cation ratio on the layer dynamics by adopting three stratification ratios for the constant sidewall temperature
case. We perform one simulation for constant lateral heat flux to study the effects of the temperature boundary
conditions. We apply the argument for layering in turbulent stratified fluids to our problem, and find—despite
the tilted nature of cell boundaries in our case—similarities in both the averaged equations and actual layer
evolution. Finally, we provide details for both edge mergers and interior mergers.

PACS number~s!: 47.17.1e, 47.20.Ky, 47.27.2i
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I. INTRODUCTION

Double-diffusive convection, in which two diffusive spe
cies ~with different diffusivities! compete to determine th
convective stability of a fluid, is ubiquitous in both terrestr
and astrophysical environments@1#. Of special interest are
cases where the total density is stably stratified, while
less diffusive species~‘‘solute’’ ! is stabilizing and the more
diffusive species~‘‘temperature’’! is destabilizing; this is
sometimes referred to as the diffusive regime@1#. In this
paper we study this phenomenon in the context of vert
‘‘slot convection,’’ e.g., in the case for which the destabili
ing heat flux is horizontal~perpendicular to gravity! and de-
fined either by a constant lateral heat flux at the sidewal
by a constant temperature difference across the slot.

Double-diffusive slot convection has different regimes
stabilities as the relative strength of stabilizing solute to
destabilizing temperature varies. Such systems were stu
by Turner and Stommel@2# and Turner@3#; and Thorpe,
Hutt, and Soulsby@4# demonstrated that a simplified two
dimensional model suffices to explain the experiments~for
large solute Rayleigh numbers!. Since then, double-diffusive
slot convection has been extensively studied both experim
tally and theoretically@5–11#, including complete linear and
weakly nonlinear analyses of the steady initial state in
infinitely long vertical slot@12,13#. Kerr @14,15# has studied
cases for which the sidewall temperatures are turned on
stantaneously~impulsive heating! and finds good agreemen
with comparable results for the steady initial backgrou
states. Numerical studies of double-diffusive slot convect
were carried out by Wirtz, Briggs, and Chen@16#; these and
subsequent studies by Wirtz@17#, Heinrich@18#, and Lee and
Hyun @19# are able to reproduce general results, such as la
depth and the critical solute Rayleigh numbers, but did
consider the details of the layer dynamics, such as the m
ing or decay of layers. More recently, Wright and Shyy@20#
used a composite grid method to simulate double-diffus
convection in a square box heated laterally at a constant
Their results identify three regimes of layer formation a
interaction as the sidewall heat flux is varied, but their ana
PRE 611063-651X/2000/61~3!/2676~19!/$15.00
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sis was primarily qualitative. In this study we use a tw
dimensional Chebyshev pseudospectral code to simulate
compressible, double-diffusive slot convection, focusing
a quantitative investigation of layer evolution.

The incompressible Navier-Stokes equations are sol
using the influence matrix technique@21# with Tuckerman’s
algorithm for tau correction@22#. Others have used simila
algorithms without the complete multidimensional tau co
rection~@23# and references therein!, arguing that the result-
ing errors~viz., nonvanishing flow divergence! are balanced
by the inefficiency of the tau correction, and that these err
become ignorable as the number of grid points is increas
We discuss this point in detail in Sec. II B below.

Layer formation is also known to occur in stratified tu
bulent fluids, in which an initially stably stratified fluid i
stirred by a horizontally moving grid or rod@24,25#, and it
has been shown that the horizontally averaged buoyancy
dient plays a central role in such layering@26#. Balmforth,
Smith, and Young@27# reproduce such layer dynamics b
solving two equations coupling both the buoyancy gradi
and the kinetic energy density to some external forcing.
our cases, where solute Rayleigh numbers are large, la
are weakly driven compared to those in turbulently driv
stratified fluid, but we adopt the methodology in@26,27# to
describe the weakly driven layer dynamics: we quantitativ
describe the layer dynamics by investigating the dynamic
the horizontally averaged quantities, such as the buoya
gradient, buoyancy flux, kinetic energy density, horizon
stratification, and the two Nusselt numbers. Results sh
that the mean quantities describe the layer dynamics w
even though the horizontal average is taken across the ti
layer boundaries in our cases; and we find similar layer
namics to those described in@27#.

This paper is organized as follows: in the next section
discuss the numerics. In Sec. III we summarize the vari
parameters characterizing the layer formation found in
previous literature. In Sec. IV we present our results, cons
ering the cases of both fixed sidewall temperature and c
stant lateral heat flux. We discuss layer merging and sum
rize our results in Sec. V.
2676 ©2000 The American Physical Society
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II. EQUATIONS AND NUMERICAL ALGORITHMS

A. Equations

We consider a two-dimensional~2D! rectangular box of
width d and heightH ~Fig. 1!, which we assume to be filled
by an incompressible fluid (¹W •uW 50) coupled to two scala
fields through the buoyancy effect@1,28#. The two scalar
fields ~in our case, temperature and solute! have different
diffusivities; their evolution is described by advective diff
sion equations, with temperature~T! being more diffusive
than solute~S! ~i.e., the thermal diffusivityk t is greater than
the solute diffusivityks). The governing equations are no
dimensionalized by scaling the length byd/2, time by
(d/2)2/k t ~the thermal diffusion time!, velocity byk t /(d/2),
temperature by (DT)/2 if the temperature is fixed at the sid
walls ~or by u]xTud/2 if the thermal flux is fixed instead!, and
solute byu]zS0uH/2, whereS0 is the initial solute distribution
and is assumed to be dependent only onz. The system is then
described by five dimensionless~control! parameters: the as
pect ratioA[H/d, the Prandtl numbers[n/k t , the diffu-
sivity ratio t[ks /k t , the thermal Rayleigh number R
[gaDTd3/nk t if the temperature is kept constant at t
sidewalls ~or Ra[gau]xT0ud4/nk t if the thermal flux is
fixed constant instead!, and the solute Rayleigh numberRs
[gbDSd3/nk t5gbu]zS0uHd3/nk t . @a is the thermal ex-
pansion coefficient,b[(]r/]S)/r, andg is the gravitational
acceleration.# For numerical convenience, we scale leng
in thez direction so thatz lies in @21, 1#, independent of the
aspect ratioA. We expand the variables in truncated tw
dimensional Chebyshev polynomials

f ~x,z,t !5(
i 50

L

(
j 50

M

f i j ~ t !Ti~x!Tj~z!,

where the spectral coefficientsf i j (t) are calculated through
the cosine transform off (x,z,t) at the Gauss-Lobatto point
@29#

FIG. 1. Sketch of the vertical slot of widthd and heightH, filled
with incompressible fluid. No-slip boundary conditions for the v
locity and no-flux boundary conditions for the solute are adopt
We also adopt insulating boundary conditions for the temperatur
top and bottom end wall. The initial state is a static state wit
stably stratified solute gradient. The sidewall temperatures are
pulsively turned on at the beginning of the simulation.
s

f lm~ t !5
4

c̄l c̄mLM (
i 50

L

(
j 51

M
1

c̄i c̄ j
f ~xi ,zj ,t !Tl~xi !Tm~zj /A!,

where xi5cos(ip/L) and zj5cos(jp/M) are the Gauss-
Lobatto collocation points;c̄l ( i )52 if l ( i )50 or L, c̄m( j )
52 if m( j )50 or M, and c̄51 otherwise. The incompress
ible Navier-Stokes equations under the Boussinesq appr
mation for this double-diffusive system thus read

] tuW 1~¹W 3uW !3uW 52¹W P1s¹2uW 1
s

16
~2RaT1RsS!ĝ,

~2.1!

] tT1~uW •¹W !T5¹2T, ~2.2!

] tS1~uW •¹!S5t¹2S, ~2.3!

¹•uW 50, ~2.4!

where ¹W []xı̂1(1/A)]zk̂ and ¹2[]x
21(1/A2)]z

2. The
boundary conditions, unless specified otherwise, are no-
boundary conditions for the velocity (uW 50W ) and no-flux
boundary conditions for the solute (]nS50) at x561 or z
561. The temperature may be fixed constant, or the ther
flux may be fixed constant at the sidewalls. At the top a
bottom walls, we adopt insulating boundary condition:]zT
50uz561 .

B. Numerical algorithms

We use an Adams-Bashforth and Crank-Nichols
scheme to evolve the system: Adams-Bashforth for the
vective term and Crank-Nicholson for the Laplacian on t
right-hand side@29#. After time discretization, Eqs.~2.1!–
~2.3! take the general form for a time step ofDt at the (i
11)th iteration

~¹n
22l! f i 115G~ f i , f i 21!, n51,2,3, ~2.5!

whereG is a function of the variable~s! from previous time
steps,l152/(sDt) for Eq. ~2.1!, l252/Dt for Eq. ~2.2!, and
l352/(tDt) for Eq. ~2.3!. This equation is solved using th
matrix diagonalization scheme@30# in 2D Chebyshev spec
tral space at each iteration;Dt is chosen such that the Cou
rant criterion is satisfied at each time step. The matrix
quired in solving Eq.~2.5! for a given time stepDt is
calculated and stored in a preprocessing routine; thus, s
ing this equation involves onlyO(L2M /21LM2/2) opera-
tions. The boundary conditions for each variable are inc
porated in the spatial discretization using the t
approximation@29#, where we first project a vector into
subspace of low-frequency components and solve for t
spectral coefficients and then solve for the high-freque
components through the boundary conditions@29#. We de-
note this projection operation byQlo @22#, and as pointed ou
in @22#, this operator does not commute with the spatial d
rivative operator¹W . This turns out to be important in imple
menting the influence matrix method to find the incompre
ible velocity, which is the subject of the following
discussion.
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2678 PRE 61Y. YOUNG AND R. ROSNER
TABLE I. Summary of the parameters and averaged length scales for the three cases.u0 is the angle
between the steady isohaline contours and the horizontal level at the center (x50), u1 is the averaged angle
between layers and thex axis ~excluding the edge cells!, h0 is the averaged layer thickness excluding t
edge layers,h1 is the averaged layer thickness including the edge layers.l t andls are the boundary laye
thicknesses determined from the horizontal gradient of temperature and salt, respectively, andl i is the
averaged spacing between layers. The unit for the bouyancy frequencyN0 is AgaDT/d s 21. Note thath0

andh1 differ appreciably only in the case where buoyancy driving is large, so that the tilting of the edge
is substantially greater than that of the interior cells.

Rr 105 Rh Re N0 h ~d! u0 ~deg! u ~deg! h0 (d) h1 (d) l t (d) ls (d) l i (d)

Case~1! 0.7 0.29 ;O~10! A7 10/7 56.3 23.8 0.97 1.53 0.2 0.1–0.2 0.1
Case~2! 1.2 2.75 ;O~10! A12 5/6 36.6 19.2 0.40 0.49 0.2 0.1–0.2 0.1
Case~3! 1.5 5.40 ;O~10! A15 4/6 35.2 10.3 0.40 0.47 0.2 0.1–0.2 0.1
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We use the multidimensional version of the influence m
trix method to satisfy the divergence-free constraint@22#: we
replace Eq.~2.4! with a Poisson equation for the pressu
and solve for the correct pressure that will give us
divergence-free velocity. The influence matrix method
lows one to find the correct pressure without advance kno
edge of its boundary conditions; in other words, we look
both the pressure and its correct boundary conditions at
same time. However, a small error will occur in satisfyi
¹W •uW 50 if the noncommutation between the two operat
Qlo and ¹W is not taken care of in the implementation@22#,
independent of the nature of the algorithm for solving forP.
Kleiser and Schumann@21# propose a remedy, called the ta
correction, to remove the error due to this noncommutat
We follow the generalized version of tau correction by Tuc
erman@22#, but introduce a few refinements to her schem
The first refinement is the treatment of the boundary con
tions: we implement the boundary conditions into the L
placian operator in spectral space in such a way that
spectral operator is nonsingular. This significantly redu
the ambiguity in the calculation of the inverse of the infl
ence matrix, i.e., the determination of null vectors in t
inverted influence matrix. Secondly, we use singular va
decomposition~SVD!, instead of eigenvalue decompositio
to calculate the inverse of the influence matrix, and a
adopt the threshold for the determination of the null vect
used by Tuckerman to find the inverse of the influence m
trix from SVD. We have found that, regardless of the tim
step and the number of modes in either direction, we alw
have eight null vectors for the inverted influence matrix. T
calculation of the inverse of the influence matrix is very tim
consuming due to the complexity of the tau correction
more than one direction, and we have therefore precalcul
the inverse of the influence matrix for various values of
time step and stored them for later use.

A number of authors have used the influence ma
method without the tau correction@23#; Tuckerman ad-
dressed this point@22#, and Werne@31# shows the impor-
tance of the tau correction. By numerical experimentati
we confirm the conclusion in@22# that the amplitude of the
divergence is independent of the number of modes u
Once we turn off the tau correction, the amplitude of t
divergence of the velocity is 106 or more larger than the
corrected one and does not decrease much as we increa
number of modes~contrary to the claims in@23#!. In addition
to the incompressibility constraint, another numerical ch
-
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lenge is the separation of spatial scales due to the diffe
diffusivities of the diffusive species. Numerically it is no
possible to carry out computations for arbitrary diffusivi
ratios of the two scalar fields. The reason is that the more
ratio differs from unity, the greater is the disparity betwe
the characteristic length scales of these two scalar fie
consequently, more grid points are needed to resolve the
tial structures. However, the heat and mass transfer acro
diffusive interface are shown in experiments@32# to obey a
scaling law as long as the density stratification ratio is ab
a critical value; no general scaling can be found for strat
cation ratios less than this critical value. In this paper
concentrate on quantita-tive descriptions of layer dynam
thus we adopt a diffusivity ratio of 0.1 in our simulations.

III. CHARACTERISTIC PARAMETERS
AND INITIAL STATES

A. Characteristic parameters

The previous literature of layering in both the latera
thermal driven cases and the turbulently driven cases
introduced a number of nondimensional parameters, wh
are very useful in characterizing the physics governing l
ering. In this subsection, we provide a brief summary
these characteristic parameters.

~1! h[aDT/bu]zS0u. Chen, Briggs, and Wirtz@5# intro-
ducedh as a length scale for layer depth, which can also
expressed in terms of our dimensionless parametersh
5A(Ra/Rs). They obtain averaged layer thicknesses in
range of 0.6h and 0.9h @5#; Huppert and Turner reported
layer thickness of 0.66h for solute Rayleigh numberRs
;106 in similar experiments@33#. This length scale is the
vertical distance over which the buoyancy due to horizon
temperature difference is balanced by the stabilizing so
gradient.

~2! Rh[gaDTh3/nk t . Chen, Briggs, and Wirtz also in
troduced a Rayleigh number (Rh) associated with the
length scale h, which can also be expressed asRh
5(Ra/Rs)

3A3Ra, it has a critical value of (1.53104)
6(2.53103) for the onset of layer instability, which is foun
to be independent of the solute diffusivity@5#. We remark
here thath is a useful parameter only for layers observed
the interior because the physical circumstances governing
formation of the edge cells~top and bottom! are known to be
different than for the interior@4#.
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FIG. 2. Energy ratioRf @scaled
to (RasA/8)# as a function of
time t; times are scaled to the slo
thermal diffusion time. The three
panels correspond to the thre
cases discussed in Sec. IV A. Th
oscillation at the beginning is due
to the transient state as we in
stantly turn on the temperatures
the sidewall. In~a! @case~1!# we
see well-defined peaks beforet
50.8, when the first merging oc
curs at the edge cells. These pea
correspond to layer formation in
the interior. ~b! and ~c! are the
corresponding plots for cases~2!
and~3!, respectively. In these two
cases, we do not see as man
well-defined peaks correspondin
to cell formation as in the first
case. This is because the kinet
energy of the edge cells increase
much faster in these two case
and the ratio drops to small value
at an early time. Solid dots on
these curves correspond to th
merging at the edge layer. Th
open circle in~a! indicates the in-
terior layer merger. The small os
cillations around 0.4,t,0.6 in
~b! and 0.5,t,0.8 in ~c! are due
to the formation and destruction
of opposite circulation cells~cir-
culating upward at the cold end
and downward at the hot end!.
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~3! Rr[bu]zS0ud/aDT. Young and Rosner@12# intro-
duced the density stratification ratioRr(51/A3Rs /Ra) to
classify the various regimes in linear stability analysis.
summary, the instability is double diffusive and the she
flow is important only near the boundary forRr.1. For Rr

,1, the shear flow is dominant and the instability is sh
induced. ForRr,1 our numerical simulations show ce
structures similar to those in vertical slot convection@23#:
cells are broken up into two pieces, which then move
opposite directions along the boundary currents. We also
serve that forRr;1 two layers will be sheared horizontall
in opposite directions and then merge to form a bigger c
In our numerical simulation for the fixed sidewall temper
ture cases, we adopt two values of the Rayleigh number
the double-diffusive regime (Rr>1), and one value in the
shear driven regime (Rr,1).
r

r

n
b-
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~4! p3[au]xTu/bu]zS0u. Narusawa and Suzukawa stu
ied layer formation due to a lateral heat flux@34#, and intro-
duced the ratiop3 of the applied constant horizontal he
flux to the vertical solute gradient, obtaining a critical val
~0.28! of this ratio for layer formation.

~5! R1[au]xTu/(2a]zT01b]zS0). This modification of
the flux ratiop3 proposed by Schladow, Thomas, and Kos
@35# is the ratio of applied heat flux to vertical density gr
dient. Later Wright and Shyy@20# usedR1>1 in their nu-
merical simulations and showed that forR1@1 the horizon-
tal intrusion is more dynamic, and merging occurs near
front of each layer at an early stage.

~6! Rf[~integrated potential energy!/~integrated kinetic
energy!. In all the cases discussed above, the thermal bu
ancy is the driving force that initiates layer formation. Th
Reynolds numbers (Ul /n) are in the range of;10, the
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2680 PRE 61Y. YOUNG AND R. ROSNER
buoyancy frequency N0[(2g]zr̄/ r̄)0.5;(Rs /Ra
3gaDT/d)0.5 is about 0.8 s21 for a temperature gradient 0.
deg cm21, and Rs /Ra510 in water. In these cases laye
form as a result of buoyancy balance between the destab
ing horizontal thermal gradient and the stabilizing saline g
dient. In the strongly driven case, where the forcing is p
vided by moving a grid horizontally across the contain
@26,24,25#, Reynolds numbers are of order several hundr
and one observes layer formation as turbulent motions
maintained by the external forcing. In these cases of sta
stratified turbulent fluids, various Richardson numbers
used to qualitatively describe the system@36,37#. In our ther-
mally driven cases, we adopt an integrated ratio, the ene
density ratioRf ~similar to the flux Richardson number!, to
describe the mixing efficiency;Rf is defined in Eq.~4.1!
below. Rather unlike the Richardson number~s!, the absolute
magnitude of this ratio is not related to the appearance
instability that will lead to layer formation, but it is useful a
an indicator of the mixing efficiency as a function of time

B. Initial states

There are various ways to prepare the experiments in
laboratory. In the case where the sidewall temperatures
fixed, the desired temperature difference across the walls
be established gradually~‘‘gradual heating’’!. Alternatively,
one can fix the sidewall temperatures to the desired va
virtually instantaneously, and keep them fixed during
course of the experiments~‘‘impulsive heating’’!. Chen and
Chen have performed experiments@38# for both cases and
found results to be similar. Kerr’s linear analyses for t
impulsive heating case~for large solute Rayleigh numbers!
predict a layer thickness and critical temperature differe
close to those for the gradual heating case@14#. In a subse-
quent paper he also showed that the bifurcations are sub
cal ~for large solute Rayleigh numbers! @15#, as are those in
the gradual heating case. In our simulations, we concen
on the impulsive heating cases: We use the static state w
stabilizing salt gradient as the initial condition and instan
neously set the temperatures at the walls to the desired
ues. For the case where the heat flux is fixed instead,
initial state is a static state in the diffusive regime~a stably
stratified density gradient with solute stabilizing and te
perature destabilizing! and we instantaneously turn on th
heat flux at one sidewall and keep it fixed for the rest of
calculations; this heat flux is assumed to be homogeneou
the sidewall.

IV. RESULTS

A. Fixed sidewall temperature: AÄ10, sÄ7, and tÄ0.1

For cases where the sidewall temperature is fixed, th
sets of Rayleigh numbers are used, and we observe diffe
layer dynamics as we change the stratification ratioRr . In
all these computations, we use 49 modes in thex direction
and 257 modes in thez direction. At t501 the sidewall
temperature is impulsively imposed. We recall that time
scaled by the thermal diffusion time across the slot, and
time step is usually as small as 1024 to maintain stability in
the temporal integration. As we turn on the sidewall te
peratures, cells near the ends are observed to form first a
iz-
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weak circulation is found in the interior; the top edge c
forms near the cold wall while the bottom edge cell form
near the hot wall. The interior circulation is weak as t
isohaline contours adjust to the relaxing temperature pro
and a steady circulation is established before any instab
grows.~The circulation at the center of the slot correspon
to the background state in the linear analysis.! Within the
edge cell the solute is well mixed and the temperature
rendered stable. As edge cells grow and advance toward
interior, the vertical thermal and solute gradients are found
accumulate at the layer boundaries. Instability in regio
next to the edge cells is thus initiated~see@13#!, and two
cells are found to form simultaneously next to the edge c
Of these two cells, the one immediately adjacent to the e
cell has opposite circulation~downward near the hot wal
and upward near the cold wall! to the dominant circulation
direction in the slot and soon dies. The other cell, with t
same orientation as the edge cells~upward near the hot wal

FIG. 3. Average buoyancy gradient¹̄buoy as a function ofz and
t for case~1!. The dashed lines are fits to the trajectories of t
in-moving boundary of the edge cell. They are proportional tot0.5.
The solid lines are fits to the trajectories of the outward-mov
boundary of the neighboring cells, soon to be swallowed by
edge cell. They are proportional to (t2t0)1.5, where t0 is a free
parameter. These two dashed lines have different proportionali
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PRE 61 2681NUMERICAL SIMULATION OF DOUBLE-DIFFUSIVE . . .
and downward near the cold wall!, survives and grows in
size and initiates cell formation next to it. This process co
tinues until layer formation reaches the center. In the in
face regions between the layers, the stabilizing salt grad
increases as a result of mixing within cells. The calculatio
also show that the vertical thermal gradient is rendered
stabilizing in these interfaces while the density is rende
stably stratified. In the following, we shall use the ener
density ratio~similar to the flux Richardson number define
in @26#! to describe the mixing efficiency, and the buoyan
gradient to describe the layer dynamics. We also present
eral horizontally averaged quantities as functions ofz and t
for three sets of Rayleigh numbers (Ra,Rs), all with A
5H/d510, s57, and t50.1: ~1! (Ra,Rs)5(8.63104,
6.13105), ~2! (Ra,Rs)5(1.63105,1.923106), and ~3!
(Ra,Rs)5(1.63105,2.43106). These parameters corre
spond to a temperature difference ofDT52° – 4° in water if
the width of the slot is aboutd51.9– 2.5 cm. In the first cas
(Rr50.7) the boundary currents along the vertical walls
strong, and cells are tilted by these boundary currents as

FIG. 4. Time-space plot of¹̄buoy for case~2!. In this case we
can fit the trajectory of the advancing boundary of the edge ce
the t0.5 curve only before the first encounter with the neighbori
cell. The boxed area is where cells disappear due to the decre
buoyancy gradient; no merger occurs in this region.
-
r-
nt
s
e-
d

v-

e
ey

form; after layer formation we observe interior cells mergi
to form a single cell which is twice the size of the origin
one ~see Sec. V for details!. In this case, the calculation i
carried to 3.5 thermal diffusion times. For cases~2! and~3!,
Rr.1 and the salt stratification can prevent the verti
shear from destroying layer structures; calculations are
ried to 4 thermal diffusion times. For water (n
50.01 cm2 s21 and n/k t57) this corresponds to observin
the experiment for 0.5–1.5 h withd52 – 2.5 cm.

In Table I we list parameters of interest and summar
the various averaged length scales from the simulations
the three cases. We note that the tilting angles are avera
over all cells except for the top and bottom~edge! cells in all
cases. In addition to the parameters introduced in Sec. III,
also include five length scales and two angles as describe
the table caption.

We first examine the effect of cell creation and destru
tion on the overall efficiency of convection. To do this, w
define the integrated energy density ratio as

o

ing

FIG. 5. Time-space plot of¹̄buoy for case~3!. We note that in
this case the layer dynamics evolves more slowly than in the
two cases. The two boxes enclose regions where cells disappe
the buoyancy gradients fail to sustain layer structures. The dif
ences found in these two regions are discussed in the text~See. V!.
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FIG. 6. Horizontally averaged kinetic energ
density (ē, solid line!, buoyancy flux (f buoy/2,

dash-dotted line!, and buoyancy gradient (¹̄buoy,
dotted line! as functions ofz at eight different
times for case~1!. t50.3, 0.5, 0.7, 1.5, 1.7, 2.0
2.5, and 3.28 for plots~a!–~h!, respectively. The

left ordinate is for both¹̄buoy and f buoy/2; the
right ordinate measures the scaled kinetic ene
densityē.
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Rf[
*2gz~2aT1bS!dx dz

*~u21w2!dx dz

5
RasA

8

*z~T2Rs /RaS!dx dz

*~u21w2!dx dz
, ~4.1!

where the integral is taken over the whole box. We p
Rf /(RasA/8) as a function of time in Figs. 2~a!–2~c! for the
three cases. We remark that in our simulations, where
flow is driven by a lateral temperature difference,Rf can be
very large at the beginning since we start from a virtua
static state where the potential energy is much greater
the kinetic energy. The inverse ofRf measures the efficienc
of conversion from potential energy to kinetic energy. W
see thatRf does not vary smoothly in time, and that it vari
by orders of magnitude as the potential energy is conve
to kinetic energy during layer formation and merging.
t

e

an

d

We utilize horizontally averaged quantities to descri
layer dynamics as in@27#. The horizontally averaged

buoyancy gradient~in nondimensional form! ¹̄buoy(z,t)

[(gaDT/Ad)21g(aT̄z2bS̄z)5T̄z2(Rs /Ra)S̄z is a good
indicator of the layer dynamics@26,27#: spikes in the buoy-
ancy gradient vertical profile correspond to layer locations

can be seen in Figs. 3–5 where we plot¹̄buoy(z,t) as a func-
tion of t andz for the three cases. One concern might be t
the layer tilting in our case might cause difficulties in defi
ing physically meaningful horizontal averages. The reas
that layer tilting does not make much of a difference to o
argument is as follows: As we take the horizontal avera
near a tilted layer boundary, we pick up contributions fro
the two layers on either side of the boundary. However,
difference in height due to this tilting never exceeds1

5 of the
layer thickness for the internal layers in all cases, so that
total contribution from adjacent layers is localized near th
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FIG. 7. Snapshots of kinetic
energy density (ē, solid line!,
buoyancy flux (f buoy/2, dash-
dotted line!, and buoyancy gradi-

ent (¹̄buoy, dotted line! as func-
tions of z at eight different times
for case~2!. t50.35, 0.5, 0.7, 1.1,
1.5, 2.2, 2.5, and 3.36 for plots
~a!–~h!, respectively. Coordinate
axes have the same meaning as
Fig. 6.
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common boundary. Furthermore, the no-flux and no-s
boundary conditions at the sidewalls enhance the peak va
in the mean buoyancy gradient and buoyancy flux at
center of the layer boundaries. Since our argument does
depend on the actual values of the horizontally avera
quantities, but instead only on the vertical position of th
extrema~which are known to mark the boundaries!, we need
only check if the positions of these extrema indeed co
spond to the boundary positions. We have therefore c
pared the position of layers determined from the mean qu
tities to 2D results from our simulations, and find that t
correspondence between the position of the extrema of
mean buoyancy gradient and buoyancy flux and the posi
of the midpoint of the tilted boundary layers is excellent.

As shown in @26#, merger events are manifested as t
‘‘collision’’ of spikes in ¹̄buoy(z,t). For example, conside
p
es
e
ot
d

r

-
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n-
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n

e

the evolution of spikes in Fig. 3: att;0.35, two spikes are
generated atz568.5, moving towardz5610, respectively.
These outward-moving spikes are the retreating ends of
edge layer boundaries: as the bottom~top! edge cell ad-
vances on the hot~cold! end and retreats on the cold~hot!
end, the neighboring cell is pushed toward the retreating e
moving downward toward the cold wall~upward toward the
hot wall for the top edge cell!. At t;0.8 ~when the outward-
moving spikes hit the wall! the edge layer completely swa
lows the neighbor cell and continues expanding until it sw
lows another cell att;1.6. These outward-moving spike
follow trajectories proportional tot1.51 from t;0.4 to t
;0.8 ~the solid line in Fig. 3!. For 0.2,t,0.5 and 0.8,t
,1.8, the inward-moving spikes travel along curves prop
tional to t0.5, denoted by the dashed lines in Fig. 3~see@27#
for comparison.! At t;1.2 we have altogether 14 layers;
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FIG. 8. Snapshots of kinetic
energy density (ē, solid line!,
buoyancy flux (f buoy/2, dash-
dotted line!, and buoyancy gradi-

ent (¹̄buoy, dotted line! for case
~3!. t50.35, 0.6, 1.5, 2.0, 2.5, 3.0
3.5, and 3.86 for plots~a!–~h!, re-
spectively. Coordinate axes hav
the same meaning as in Fig. 6.
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t;1.6, the two edge layers swallow their neighbor ce
again to form bigger cells, leading to 12 cells; fromt;1.7
onward merging occurs over the entire container~to be de-
scribed in Sec. V! and lasts untilt;2.5, when only 7 layers
remain. The edge layers continue to work their way tow
the center, swallowing the neighboring cells until the end
our calculation. For the other two cases~Figs. 4 and 5!, the
advancing front of the edge cells follows thet0.5 trajectory
~dashed line! until the edge cells swallow their neighbo
cells. The outward-moving spikes in these two figures~solid
curves! also follow thet1.5 trajectory~as in case 1! until they
hit the end walls.

The average~dimensionless! buoyancy flux f̄ buoy(z,t)
[(gak tDT/d)21g(awT2bwS)5wT2(Rs /Ra)wS is ob-
served to have the same layer structures as those of the b
ancy gradient. In Figs. 6–8 we display the average buoya
d
f

oy-
cy

flux, together with the buoyancy gradient and the avera
kinetic energy densityē @[(u21w2)/2, scaled to (2k t /d)2#

at eight different times. We note that the buoyancy fluxf̄ buoy

reaches a minimum wherever the buoyancy gradient¹̄buoy

reaches a maximum~and vice versa!, and thatf̄ buoy does not
go to a constant value after the merging, in contrast to
results in@27#.

The~dimensionless! salinity difference across the box an
its vertical gradient,h(z,t)[(r0aDT)21r0bS(x,z,t)ux521

x51

5(Rs /Ra)S(x,z,t)ux521
x51 and]zh(z,t), are also good indica-

tors of layer boundaries. We show contour plots of bo
h(z,t) and]zh(z,t) for the three cases in Figs. 9, 10, and 1
respectively. As cells develop, the solute is homogenized
the circulation inside the cell and accumulates near the la
boundaries, where the vertical velocity is zero. In panels~a!
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of Figs. 9–11, the darker stripes correspond to the la
boundaries and the lighter stripes correspond to circula
inside the cell where solute is redistributed. First, we n
that att;0.6 in Fig. 9 a horizontal solute gradient is foun
near the center as a steady flow is established in the inte
and h remains constant there until layers form. Second,
note that the larger the stratification ratio, the longer it ta
for layers to develop and to mix the solute; this effect
evidenced by noting the time it takes for the dark stripes
turn gray. In panels~b! of Figs. 10 and 11, each pair o
adjacent stripes~one lighter and one darker! corresponds to
one layer boundary in the isohaline contour plots: the ligh
stripe corresponds to the position of the boundary at the
wall, while the darker stripe corresponds to the position
the boundary at the cold wall. In Fig. 9~b!, the contrast be-
tween these two stripes in a pair is not large until merg
occurs. As cells undergo merging, the solute contrast
comes larger, and thush increases in amplitude at first. A
the mixing is enhanced,h is homogenized~decreased in am
plitude! within the merging cell, and rapidly accumulate
near the layer boundaries; that is why the contrast of]zh
increases after merging.

We next consider the results for heat and solute transp
In Figs. 12~a!–12~c! we show contour plots of horizontall

FIG. 9. ~a! Horizontal salinity difference~h! across the box as a
function ofz andt in gray scale for case~1!. ~b! Vertical gradient of
the horizontal salinity difference (]zh) for case~1!. The gray scale
color tables are shown next to the right ordinate in both panels
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averaged vertical heat fluxes as functions ofz and t for the
three cases, respectively; we scale the~dimensionless! heat
flux FW 5uW T2¹W T to the horizontal conductive heat flu
(k tDT/d in this case!. Initially, the sidewall temperatures ar
set instantaneously to fixed values, and thus heat is tr
ported by the interior circulation in the slot. As temperatu
relaxes toward the steady profile in the interior~at the center,
this steady state is the background state in the linear anal
@12#!, the vertical heat flux decreases everywhere except n
the end walls, where cells grow and the heat flux is enhan
by convection. A dramatic increase in the amplitude of t
thermal flux is observed as layers merge. This transient
havior leads to almost an order of magnitude change in
heat flux for the edge cells as they swallow the neigh
cells. As layer formation proceeds toward the center of
box, the vertical heat flux first increases in amplitude with
the cells, oscillates for a while, and then decreases if
merging occurs.

We see that most of the heat supplied from the sidew
is advected to the edge cells~confirming an earlier conjecture
by Thorpe, Hutt, and Soulsby@4#! by comparing Fig. 12 with
the temporal evolution of the Nusselt number Nu shown
Fig. 13; the latter quantity is just the scaled horizontal h

FIG. 10. ~a! Horizontal salinity difference across the box as
function ofz andt in gray scale for case~2!. ~b! Vertical gradient of
the horizontal salinity difference for case~2!. The gray scale color
tables are shown next to the right ordinate in both panels.
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2686 PRE 61Y. YOUNG AND R. ROSNER
flux averaged over z at the hot wall, Nu[*(uT
2]xT)x521dz/*dz. The salt flux is generally more en
hanced than the heat flux when merging occurs, as see
Figs. 14~a!–14~c!: these panels show the horizontally ave
aged salt fluxFW s, scaled to the conductive vertical heat flu
(2ks]zS0 in this case!, FW s5A(uW S/t2¹W S), as functions ofz
and t for the three cases, respectively.

One notices that after merger events, both the salt
heat fluxes decrease faster than the kinetic energy flux
can be seen in temporal and vertical profiles of the horiz
tally averaged kinetic energy flux shown in Figs. 15~a!–
15~c!.

We also observe oscillations in the heat, salinity, and
netic energy fluxes after a layer merger occurs. These o
lations are manifested by the alternating colors seen a
merging events in Figs. 12, 14, and 15. These oscillations
closely related to thermal waves seen to propagate from
sidewall to the other near the top and bottom of the ne
formed cells after merger.

B. Constant lateral heat flux: AÄH ÕdÄ2, sÄ7, and tÄ0.1

Narusawa and Suzukawa@34# observed layer formation a
a constant lateral heat flux is applied to a body of fluid ch

FIG. 11. Horizontal salinity differenceh ~a! and its gradient]zh
~b! in gray scale for case~3!. The gray scale color tables are next
the right ordinates in both panels.
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acterized by a stably stratified solute; and Schladow, T
mas, and Koseff@35# observed layers when the stabilizin
solute was accompanied by a destabilizing temperature
dient. In order to investigate layer dynamics in this case,
fix on a particular set of values for the control paramete
we assume an aspect ratioA52, a Prandtl numbers57, a
diffusivity ratio t50.1, (Ra,Rs)5(2.43105,3.23106), and
a constant lateral heat flux]xT524]zT0 at x521, where
]zT0 is the initial temperature gradient. These choices co
spond toR152 and p351.8 ~as defined in Sec. III!. The
initial state is assumed to be static, with a destabilizing te
perature gradient and a stabilizing solute gradient.

At t50, the lateral heat flux is turned on and is ke
constant for the rest of the calculation. At onset, cell form
tion occurs very quickly. Thus, by the timet;0.3, we find
that eight dominant cells have already formed, with an av
age layer depth of;0.2d. Between these dominant cells w
also observe five smaller counter-rotating cells; some
these grow for a short while, and three of these decay as c
of the dominant circulation orientation~upward near the ho
wall and downward near the cold wall! grow. The dominant
cells also evolve: some simply die away, while others me
as in the case of fixed sidewall temperatures. Thus, near
end of our simulation, only four dominant cells and tw
counter-rotating cells remain, with an average layer depth
'0.5d.

The evolution of the dominant circulation cells can
described in more detail as follows. The temperature near
top wall increases very rapidly from onset, while the te
perature near the bottom wall increases much less rapidly
a consequence, the vertical thermal gradient is rende
stable over the entire slot byt;0.4. During this period, the
top cell expands~by virtue of the fact that its bottom bound
ary moves downward!, and the bottom cell contracts~by vir-
tue of the fact that its upper boundary also moves dow
ward!; the displacement of the bottom of the top cell sca
as t1 ~shown as the dashed line in Fig. 16!, while the dis-
placement of the top of the bottom cells is much faster, a
scales ast1.5 ~shown as a solid line in the same figure!. The
scaling of the top boundary of the bottom cell is thus ide
tical to that for the outward-moving spikes in the consta
sidewall temperature case.

In the present case we also see layers merge during
early period, and also observe decay of cells in the middle
the simulation domain. Layers merge in similar fashion
the layer merging seen in the constant sidewall tempera
cases: heavy cells roll on top of light cells, the two mergi
rapidly due to overturn instability~see Sec. V!.

An important aspect of the constant lateral heat flux c
is that it shows spike collisions that do not correspond to c
mergers. An example is shown in the boxed area of Fig.
which shows the collision of two spikes, leading to the ge
eration of a single spike. Examination of the temporal ev
lution of either the flow field or the salinity differenceh and
its vertical gradient]zh ~shown in Fig. 17! shows that this
spike collision corresponds to the decay of a cell, toget
with the growth of an adjacent cell into the space vacated
the decaying cell: no cell merger is involved. Thus, figur
such as Fig. 16 are insufficient by themselves to distingu
between cell mergers, and cell death and growth.



t

t

in

PRE 61 2687NUMERICAL SIMULATION OF DOUBLE-DIFFUSIVE . . .
FIG. 12. Horizontally averaged vertical hea

flux F̄z as a function ofzandt for the three aspec
ratio 10 cases,~a!–~c!, respectively. The gray
scale color tables forFz are shown next to the
right ordinates. We observe a drastic change
the amplitude ofFz as two cells merge in all
three cases.
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Finally, examination of the kinetic energy density (ē),
three horizontally averaged vertical fluxes (F̄z , F̄z

s , and f̄ e),

buoyancy gradient (¹̄buoy) and buoyancy flux (f̄ buoy) shows
very similar behavior to that observed in the constant si
wall temperature case: we see bursts and subsequent os
tions in the vertical fluxes as two cells merge; and that
buoyancy flux is not spatially uniform~in Fig. 7! after cell
merger.

V. DISCUSSION AND SUMMARY

A. Layer formation and dynamics

In this section, we focus on the layer dynamics via t
horizontally averaged equations for the buoyancy. We
mark again that, though the mean quantities have contr
tions from both cells across the tilted boundaries, they se
-
illa-
e

e
-

u-
e

well to represent the layer structures because the tilting d
not affect the correspondence in vertical location between
extrema in the horizontally averaged quantities and the la
boundary midpoints. Through the horizontally averag
equation for the kinetic energy density and global ene
balance equation in our case, we relate our system to Ba
forth, Smith, and Young’s model@27# for layering in the case
of stirred stably stratified fluids@26,25,37#.

In order to understand the processes leading to layer
we first develop the horizontally averaged equation for
buoyancy. If we define the dimensionless buoyancy~scaled
by gaDT/2) by b̄[T̄2(Rs /Ra)S̄, average Eqs.~2.2! and
~2.3! over x, multiply the averaged Eq.~2.3! by Rs /Ra, and
subtract the resultant equation from the averaged Eq.~2.2!,
we obtain the horizontally averaged equation for the bu
ancy,
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] tb̄1
1

A
]z f̄ buoy5

1

A
]z¹̄buoy1

1
2 ]xTux521

x51

1
Rs

Ra
~12t!

1

A2 ]z
2S̄, ~5.1!

where f̄ buoy and ¹̄buoy, as defined in Sec. IV, are the buo
ancy flux and buoyancy gradient, respectively. Equat
~5.1! can be used to understand much of the dynamics
layer formation and evolution. The effect of different diffu
sivities is manifested by the last term on the right-hand s
of this equation: it vanishes ift51, and for cases of interest
(t,1; in our simulations,t50.1), (12t);1. The net hori-
zontal heat flux]xTux521

x51 is the driving force. As the linea
instability sets in, the horizontal thermal gradient builds u
buoyancy fluxf̄ buoy, and a vertical buoyancy gradient acc
mulates near the horizontal interfaces between cells as
sult of the flow pattern in the cell. As long astÞ1, ¹̄buoy and
]z

2S̄ soon dominate the right-hand side as the staircase s
tures form. Since in our case the temperature serves on

FIG. 13. Vertically averaged Nusselt number Nu~evaluated at
the hot wall,x521) as a function of time. Solid line: case~1!;
dotted line: case~2!; dash-dotted line: case~3!. We observe that Nu
increases rapidly whenever layer merger occurs.
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a perturbing force (Rs /Ra.1), layers remain steady if the
flow within cells reaches a steady pattern. However, in
case of small stratification ratios (Rr,1), the newly formed
layers cannot reach a steady state due to the strong ve
boundary currents; as a consequence of the boundary
rents, these cells move upward at the hot wall and downw
at the cold wall, and we observe formation of separatrixes
the interior cell circulation ~a higher mode in thex
direction!—each cell subsequently breaks into two sm
subcells, moving in opposite directions along the verti
shear flow. Still later we observe cell deformation, inter
mergers, and formation of bigger cells as described in S
V B. The evolution of the edge cells is also a case in wh
steady state cannot be reached, even forRs /Ra.1. In this
case, the cell neighboring the bottom edge cell consta
advects solute toward the edge cell~an analogous proces
happens at the top!; this advection accelerates the edge ce
circulation ~because it converts potential energy to kine
energy!, and leads to an upward extension of the upp
boundary of the edge cell, i.e., the edge cell grows in s
Thus the buoyancy flux provides ‘‘momentum flux’’ for th
edge cells to propagate toward the center.

In the case of constant lateral heat flux, we observe si
lar layer dynamics: the contribution from the constant late
heat flux initiates layer formation, and more solute accum
lates near the cell boundary as cells develop. However
this case, all the cell boundaries propagate downward and
temperature rises much faster at the top than at the bott

There are two important key features in the flux-gradie
relation in Balmforth’s model:~1! the buoyancy flux in-
creases once the buoyancy gradient becomes sufficie
large, which captures the steepening of the interface; and~2!
there exists an intermediate range of buoyancy gradients
which the flux decreases~increases! as the gradient increase
~decreases!, which mathematically well poses the mode
From our numerical simulations the buoyancy flux-gradie
dependence in our case can be summarized as follows: F

we found that for both interior and edge cells,f̄ buoy is not a

single-valued function of¹̄buoy as in @27#. The multivalued-
ness seen in our results may be due to the fact that diffe
regions in the cells undergo different instabilities. Seco
we also observe a range of buoyancy gradients for wh
layer-forming instability occurs (F8,0 in @27#, where the
buoyancy flux decreases as the buoyancy gradient increa!.
Third, there exists a range of values for the buoyancy gra
ent for which the buoyancy flux increases as the buoya
gradient increases~as long as both are sufficiently large!; this
range is larger for the edge cells than for the interior ce
which may explain why the edge cells keep advancing
ward the interior.

Finally, we note that the arguments presented for layer
in stirred stably stratified fluids by@27# carry through even
more extensively than might be expected by comparison
our Eq. ~5.1! ~on which our above discussion of layering
based! and Eq.~2.1a! of Balmforth, Smith, and Young@27#:
indeed, we can derive equations for the horizontally av
aged kinetic energy density and a global energy equa
similar to Eqs.~2.1b! and ~2.2! of @27#. For example, we
derive the equation for the horizontally averaged kinetic
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FIG. 14. Horizontally aver-

aged vertical salt fluxF̄z
s as a

function of z and t for the three
aspect ratio 10 cases@~a!, ~b!, and

~c!#. The gray scale tables forF̄z
s

are shown next to the right ordi
nates. We observe more oscilla
tions in the interior when cells
form in case~1! ~from t50.5 to t
51.2). These interior oscillations
are associated with the wobblin
observed in the streamlines. A
the stratification ratio is increase
(Rr) in cases~2! and ~3!, we see
lower-amplitude oscillations~and
hence less wobbling in the stream
lines!. This oscillation is respon-
sible for the tilting of the cells~in
all three cases!, and is closely re-
lated to the later interior cell
merger in case~1! ~for details, see
Sec. V!. We also observe oscilla
tions in the edge cells after merg
ing ~Sec. V!.
o
d

ua
ar

tem

rm
ergy density@ ē scaled by (2k t /d)2# by taking the inner
product of Eq.~2.1! with uW and averaging the result overx,
obtaining

] tē5
1

A
]zS s

A
]zē2wP22su]xwD1

s Ra

16
f̄ buoy2sV2,

~5.2!

whereP is the pressure in Eq.~2.1! andV[]zu2]xw is the
vorticity. @Note that we have assumed incompressibility, n
slip boundary conditions for the velocity, and no-flux boun
ary conditions for the solute in the derivations of Eqs.~5.1!
and~5.2!; we further note that we can obtain the same eq
tions if the no-slip boundary conditions at the sidewalls
replaced by stress-free boundary conditions.#
-
-

-
e

The equation for the global energy balance of the sys
can be derived by combining Eqs.~5.1! and ~5.2! to obtain
the nondimensional result

] tE
21

1 S ē2A
Ras

16
zb̄Ddz

5
s

16A
@RaT̄2RstS̄#z521

z51 2E
21

1

sV2 dz

2E
21

1

A
Ras

16

z]xTux521
x51

2
dz. ~5.3!

In the derivation of this energy balance equation, the te
(1/A)]z f̄ buoy in Eq. ~5.1! cancels with (s Ra/16)f̄ buoy in Eq.
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FIG. 15. Horizontally averaged

vertical kinetic energy flux (f̄ e

[w(u21w2)/2) as a function ofz and t
for the three aspect ratio 10 cases@~a!,

~b!, and~c!#. The gray scale tables forf̄ e

are shown next to the right ordinates. W
observe oscillations in the edge cells a
ter merging.
e
e

ity
e
rn
n-
o

s.

er
of

d
tic
gth
the

are
g
e
n,

ing.
~5.2!; we obtain the prefactor of the potential energy termzb̄
in the above integral by dividing (Ad/2)gaDT/2 by
(2k t /d)2. This equation thus balances the rate of change
the total energy of the system@the term on the left-hand sid
of Eq. ~5.3!# with the total potential energy available in th
system ~the first term on the left-hand side!, the ~always
negative! energy dissipation rate associated with vortic
generation, and~finally! the net lateral heat flux, which is th
source and sink of the total energy and thus is the exte
driver of this system.~Note that the adopted boundary co
ditions do not allow kinetic energy and buoyancy to enter
leave the system via the end walls.!

Equations~5.2! and~5.3! resemble the corresponding Eq
~2.1a!, ~2.1b!, and ~2.2! in @27# if we identify the vorticity
term with the turbulent energy dissipation terme l 21e3/2 on
the right-hand side of Eq.~2.9b! in @27# ~l is the mixing
of

al

r

length ande is a nondimensional mixing-length paramet
related to the stratification strength in the formulation
@27#!. In Eqs. ~5.2! and ~5.3!, the kinetic energy diffuses
through viscous dissipation and hence the coefficient~fluid
viscosity scaled to thermal diffusivity! is a constant in front
of the vorticity term.~In contrast, in the cases of stratifie
turbulent fluids, one adopts eddy viscosity for this kine
energy dissipation term because the characteristic len
scale of the average kinetic energy is determined by both
length scale of the stirring device and the stratification.!

Thus, we see that our horizontally averaged equations
virtually identical to those of Balmforth, Smith, and Youn
@27#, with the principal difference lying in the nature of th
forcing: in our case, the motions are buoyancy drive
whereas in their case, motions are driven by external forc
Thus, while the mixing length~l! is determined by both the
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stirring device and the stratification in@27#, in our case the
corresponding scale length emerges from the linear stab
Nevertheless, their physical arguments~related to the balance
between the buoyancy gradient and the buoyancy flux! seem
to carry over to our problem, and can provide a physi
explanation for the observed layering under these appare
very different physical circumstances.

B. Merging and decay of cells

In this section, we provide a factual description of c
merger and decay, focusing on the physical circumstan
that appear to control merger and decay. We confine
discussion to the constant boundary temperature case
which the aspect ratio is 10.

FIG. 16. Time-space plot of¹̄buoy for the constant lateral hea
flux case. The dashed line traces the trajectory of the layer boun
of the top cell; unlike thet0.5 fit in the constant sidewall temperatur
cases, here the fit is proportional tot. The solid line shows thet1.5 fit
to the trajectory of the outward-going spike. Within the box arou
z520.6 a cell decays as another cell~aroundz520.3) grows. At
t51.2 a cell grows aroundz520.2; it is soon swallowed by the

cell it grows in. We also note the wavy behavior of¹̄buoy in the top
cell (1.2,z,2.0).
y.

l
tly

l
es
ur
for

During the merging of two layers, we observe hot a
salty fluid sinking as cold and fresh fluid floats up near t
center of the merging site. As two cells merge, the low
~heavier! cell moves upward, turns over, and lies on top
the upper~lighter! cell. As a result, the density is unstab
stratified ~top heavy!, the fluid undergoes Rayleigh-Taylo
instability, and potential energy is converted to kinetic e
ergy in a burstlike fashion. Due to this potential energy
lease, more slat is advected as the cell circulation speeds
~We note in passing that in our simulations, the density
never rendered stably stratified after two vertical cells int
change positions, so that we do not expect finger instab
to set in to enhance the transport of both salt and heat
seen by Lambert and Demenkow@39#.!

Figures 18 and 19 show a series of pictures as mergin
two layers takes place. For edge cell merging~Fig. 18!, the
advancing layer boundaries directly cause merging: T
horizontal temperature difference causes the edge la
boundary to tilt as it grows; for the top edge cell, the adva
ing end is along the cold wall where circulation moves
ward the center and the retreating end is along the hot w
and vice versa for the bottom edge cell. As the bound
tilts, the neighboring cell is squeezed toward the retreat

ry

FIG. 17. ~a! Salinity difference~h! across the box for the con
stant lateral heat flux case. Again, dark stripes correspond to l
boundaries, where both horizontal salinity difference and its gra
ent accumulate.~b! ]zh as a function oft andz.
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end of the edge cell, and these two cells merge as soo
part of the well-mixed heavier cell lies on top of the light
cell @40–42#.

For interior layer merging~Fig. 19!, numerical simulation
shows that the stratification ratio plays an important role.
the interior cells grow, we observe oscillation of the cells
the horizontal direction. This oscillation~wobbling! subsides
as the cell expands and homogenizes the horizontal temp
ture and saline gradients. If the solute stratification is la
(Rr>1), the interior layers remain steady after the wobbli
ceases. In cases~2! and~3! (Rr.1) some layers disappear a
nearby cells have larger buoyancy gradients~and thus more
robust layer structures!. These disappearing ‘‘weak’’ layer
~with weak buoyancy gradients to sustain the layer bou
aries! decay as the nearby cells expand with well-defined
structure; no merging occurs in these cases~see the boxes in
Figs. 3–5!. However, for case 1 where the stratification ra
Rr,1, the wobbling serves to seed the instability of high
order modes in the interior flow. Thus, the evolution of in
rior layers is as follows: First we observe cells to wobble

FIG. 18. Time series of the top edge cell merging with t
neighbor cell.~a! and ~b! are gray scale contours of the strea
function, ~c! and ~d! are isothermal contours, and~e! and ~f! are
isohaline contours. For each box in the panels, the width isd and
the height is approximately 2.6d ~this aspect ratio is the same in a
the plots!. In this gray scale representation, white is hot and hea
and dark is cold and fresh. We can see that the neighbor cell m
toward the retreating end of the edge layer boundary; this neigh
cell becomes hotter~white! as it moves up. Because it is heavi
~white!, it sinks as it reaches the cold wall.
as

s

ra-
e

-
ll

-
-
s

they develop. As the wobbling initiates instability in th
horizontal direction, we observe formation of separatrixes
the streamlines in the cells. Two small subcells are found
the interior cells, circulating in the same orientation. The
two small cells have the same solute concentration but
ferent temperature distribution. As these two closed subc
form, the layer boundaries of these interior cells tilt upwa
at the hot end and downward at the cold end, and one of
subcells dies as the other keeps expanding. As one of
subcells grows at one end, the lower and upper neigh
cells are forced to expand at the opposite end. As the dy
subcells vanish, a pair of interior neighbor cells begin
move toward each other: the upper cell moves downw
and the lower cell moves upward. Soon these two c
~growing in size at different ends! circulate around each
other. Overturn instability occurs as the heavier cell
dragged on top of the lighter one by the boundary shear fl
Potential energy is released as the top-heavy cell sinks do
and a large cell of twice the size of the original cell
formed. The generation of separatrixes of the streamline
the interior cells may be due to the instability of high
modes in thex direction, initiated by the wobbling of the
streamlines. We also observe separatrix formation in ca
where the instability is shear driven (Rr!1). In those cases

,
es
or

FIG. 19. Time series of interior cells merging.~a! and ~b! are
gray scale contours of the stream function,~c! and ~d! are isother-
mal contours, and~e! and~f! are isohaline contours. For each box
the panels, the horizontal dimension isd and the vertical dimension
is approximately 2.6d. As in Fig. 18, white is hot and heavy, an
dark is cold and fresh.
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each interior cell is torn into two cells and moves along
boundary currents. Thus this kind of merging process is
seen when the stratification ratio is large (Rr.1), where the
shear flow is much weaker near the boundary and the in
bility is double diffusive in nature.

Finally, we comment on the decay of cells, as observe
cases~2! and ~3! for aspect ratio 10. The boxes shown
Figs. 4 and 5 are regions where decay of interfaces occ
Two cells form almost simultaneously atz520.5 and
z521.0, respectively, aroundt;1.3 ~Fig. 4!. The one near
the center has larger buoyancy gradient to start with,
keeps expanding as the neighbor cell decays. This is il
trated as the breakup of a weak spike into smaller ones a
the dashed lines in the box in Fig. 4. In case~3! ~Fig. 6! we
observe a similar occurrence of layer decays in the box n
z523.5. However, in the box close toz526.5 the decay-
ing spike on the right does not break into small spikes,
instead decays while the left spike increases its amplitud
a result. In Fig. 16 we observe two spikes colliding
z520.5 aroundt51.1; however, this is not a merger even
The cell at z520.2 expands faster than the one
z520.6, which eventually decays as the cell atz520.2
keeps expanding.

C. Summary

We have simulated vertical double-diffusive convecti
in a confined, elongated container. We start with a st
initial state with a stably stratified solute gradient; the sid
wall temperature is then turned on impulsively at the beg
ning of the calculation. We have performed three sets
simulations for the constant sidewall temperature, aspec
tio 10 cases, and concluded that the stratification ratio (Rr)
is important in characterizing the interior layer dynamic
For Rr,1, the tilting of the interior layer boundaries
strong enough to deform the cells into two subcells. T
neighbor cells merge as the heavier subcell lies on top of
lighter one. During the merging, overturn instability tak
ss
e
ot

a-

in

rs.

d
s-
ng

ar

t
as
t

t

ic
-
-
f
a-

.

o
e

place and the potential energy is released in a bursty man
For Rr.1, we observe layers to decay as the neighbor c
expand and no interior merging is observed throughout
computation.

We have described layer dynamics via the use of horiz
tally averaged variables. For example, the layer bounda
are manifested by spikes in the mean buoyancy gradients
comparing the mean buoyancy gradient with the tw
dimensional stream functions, we are able to distinguish c
lision of spikes in the mean buoyancy associated with mer
events from those due to the decay and expansion of c
We also applied arguments for layer formation in@27# ~the
flux-gradient relations! to our cases, and found some sim
larities as well as differences. In all the cases, the edge c
expand toward the center of the box in a similar fashion
that found in@27#. This similarity in behavior may be due t
the similarity in the equations describing the averaged v
ables and the fact that identical vertical boundary conditio
were adopted for the buoyancy gradient and kinetic ene
density gradient. From the evolution of the heat transport
conclude that most of the heat flux applied to the sidewalls
maintain the constant sidewall temperatures goes to the e
cells, confirming a previous conjecture by Thorpe, Hutt, a
Soulsby@4#.

Finally, we have also simulated the constant lateral fl
case, and have found that, except for the fact that there
preferred direction for the layers to propagate due to
increasing vertical thermal gradient, the layer dynamics a
the transport of heat and solute are similar to those in
case of constant sidewall temperature.
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