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Numerical simulation of double-diffusive convection in a rectangular box
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We directly simulate incompressible, double-diffusive convection in a vertical slot using a two-dimensional
pseudospectral code. Incompressibility is achieved in our code by the consistent implementation of the tau
correction. We find that layer dynamics depends on the particulars of the imposed boundary conditions for the
temperature at the sidewalls and the density stratification (dt@relative strength of the stabilizing solute
gradient to the destabilizing horizontal thermal differen&¥e demonstrate the effects of the density stratifi-
cation ratio on the layer dynamics by adopting three stratification ratios for the constant sidewall temperature
case. We perform one simulation for constant lateral heat flux to study the effects of the temperature boundary
conditions. We apply the argument for layering in turbulent stratified fluids to our problem, and find—despite
the tilted nature of cell boundaries in our case—similarities in both the averaged equations and actual layer
evolution. Finally, we provide details for both edge mergers and interior mergers.

PACS numbeis): 47.17+e, 47.20.Ky, 47.27-i

[. INTRODUCTION sis was primarily qualitative. In this study we use a two-
dimensional Chebyshev pseudospectral code to simulate in-
Double-diffusive convection, in which two diffusive spe- compressible, double-diffusive slot convection, focusing on
cies (with different diffusivities compete to determine the a quantitative investigation of layer evolution.
convective stability of a fluid, is ubiquitous in both terrestrial  The incompressible Navier-Stokes equations are solved
and astrophysical environmenis]. Of special interest are using the influence matrix techniqyi2l] with Tuckerman’s
cases where the total density is stably stratified, while thelgorithm for tau correctio22]. Others have used similar
less diffusive specieg‘solute™) is stabilizing and the more algorithms without the complete multidimensional tau cor-
diffusive species(“temperature”) is destabilizing; this is rection([23] and references thergimarguing that the result-
sometimes referred to as the diffusive regifdd. In this  ing errors(viz., nonvanishing flow divergenteare balanced
paper we study this phenomenon in the context of verticaby the inefficiency of the tau correction, and that these errors
“slot convection,” e.g., in the case for which the destabiliz- become ignorable as the number of grid points is increased.
ing heat flux is horizontalperpendicular to gravijyand de-  We discuss this point in detail in Sec. Il B below.
fined either by a constant lateral heat flux at the sidewall or Layer formation is also known to occur in stratified tur-
by a constant temperature difference across the slot. bulent fluids, in which an initially stably stratified fluid is
Double-diffusive slot convection has different regimes ofstirred by a horizontally moving grid or ro®4,25, and it
stabilities as the relative strength of stabilizing solute to thehas been shown that the horizontally averaged buoyancy gra-
destabilizing temperature varies. Such systems were studietient plays a central role in such layerihg6]. Balmforth,
by Turner and Stomme]2] and Turner[3]; and Thorpe, Smith, and Yound27] reproduce such layer dynamics by
Hutt, and Soulsby{4] demonstrated that a simplified two- solving two equations coupling both the buoyancy gradient
dimensional model suffices to explain the experimdfds  and the kinetic energy density to some external forcing. In
large solute Rayleigh numbgrsSSince then, double-diffusive our cases, where solute Rayleigh numbers are large, layers
slot convection has been extensively studied both experimerare weakly driven compared to those in turbulently driven
tally and theoretically5-11], including complete linear and stratified fluid, but we adopt the methodology|[i26,27] to
weakly nonlinear analyses of the steady initial state in ardescribe the weakly driven layer dynamics: we quantitatively
infinitely long vertical slof12,13. Kerr[14,15 has studied describe the layer dynamics by investigating the dynamics of
cases for which the sidewall temperatures are turned on irthe horizontally averaged quantities, such as the buoyancy
stantaneouslyimpulsive heatingand finds good agreement gradient, buoyancy flux, kinetic energy density, horizontal
with comparable results for the steady initial backgroundstratification, and the two Nusselt numbers. Results show
states. Numerical studies of double-diffusive slot convectiorthat the mean quantities describe the layer dynamics well,
were carried out by Wirtz, Briggs, and ChEtp]; these and even though the horizontal average is taken across the tilting
subsequent studies by Witz 7], Heinrich[18], and Lee and layer boundaries in our cases; and we find similar layer dy-
Hyun[19] are able to reproduce general results, such as layearamics to those described [ia7].
depth and the critical solute Rayleigh numbers, but did not This paper is organized as follows: in the next section we
consider the details of the layer dynamics, such as the mergliscuss the numerics. In Sec. Ill we summarize the various
ing or decay of layers. More recently, Wright and SH2§]  parameters characterizing the layer formation found in the
used a composite grid method to simulate double-diffusiveprevious literature. In Sec. IV we present our results, consid-
convection in a square box heated laterally at a constant ratering the cases of both fixed sidewall temperature and con-
Their results identify three regimes of layer formation andstant lateral heat flux. We discuss layer merging and summa-
interaction as the sidewall heat flux is varied, but their analy+ize our results in Sec. V.
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Lobatto collocation pointsg,jy=2 if 1(i)=0 or L, Cy)
=2 if m(j)=0 or M, andc=1 otherwise. The incompress-
ible Navier-Stokes equations under the Boussinesq approxi-
%5=0 L S =0 mation for this double-diffusive system thus read
- > > g
19 A+ (VXU)Xi=—VP+oV2i+ Te(~RaT+RS)g,
(2.7
v —v2
cd-ap ctap T+ (U-V)T=V-T, (2.2
> = —HJ2
BT =0:5=0 3;S+(0-V)S=1V3s, (2.3
FIG. 1. Sketch of the vertical slot of widthand heightH, filled
with incompressible fluid. No-slip boundary conditions for the ve- V.u=0, (2.4

locity and no-flux boundary conditions for the solute are adopted.
We also adopt insulating boundary conditions for the temperature ajyhere ﬁzgx?+ (1/A) aZR and V2= (9>2<+ (1/A?) (93_ The
top and bottom end wall. The initial state is a static state with agoundary conditions, unless specified otherwise, are no-slip

stably stratified solute gradient. The sidewall temperatures are mBoundary conditions for the velocityi& 6) and no-flux
pulsively turned on at the beginning of the simulation. boundary conditions for the soluteS=0) atx=+1 orz

Il. EQUATIONS AND NUMERICAL ALGORITHMS =+ 1. The temperature may be fixed constant, or the thermal
flux may be fixed constant at the sidewalls. At the top and

bottom walls, we adopt insulating boundary conditiepT
We consider a two-dimensiong2D) rectangular box of =0|,_.;,.
width d and heightH (Fig. 1), which we assume to be filled

A. Equations

by an incompressible fluidV{- G=0) coupled to two scalar B. Numerical algorithms
fields through the buoyancy effe€l,28]. The two scalar ,
fields (in our case, temperature and sojuteve different We use an Adams-Bashforth and Crank-Nicholson

diffusivities; their evolution is described by advective diffu- sScheme to evolve the system: Adams-Bashforth for the ad-
sion equations, with temperatuf@) being more diffusive Vective term and Crank-Nicholson for the Laplacian on the
than solutgS (i.e., the thermal diffusivityx, is greater than right-hand side[29]. After time discretization, Eqs2.1)—

the solute diffusivityx). The governing equations are non- (2.3) take the general form for a time step at at the {
dimensionalized by scaling the length /2, time by +1)th iteration

(d/2)?/ k, (the thermal diffusion timkg velocity by «,/(d/2), ) i1 R

temperature by T)/2 if the temperature is fixed at the side- (Vi—Mf 2 =G(f,f75), n=123, (2.9
walls (or by |9, T|d/2 if the thermal flux is fixed insteagdand ) ) ) _ )

solute byl d,So|H/2, whereS, is the initial solute distribution WhereG is a function of the variablg) from previous time
and is assumed to be dependent onlgdFhe system is then StepsA1=2/(cAt) for Eq.(2.1), \,=2/At for Eq.(2.2), and
described by five dimensionlesontro) parameters: the as- A3=2/(7At) for Eq. (2.3). This equation is solved using the
pect ratioA=H/d, the Prandtl numbes=1v/«,, the diffu-  Matrix diagonalization s_chen[QO] in 2D Chebyshev spec-
sivity ratio 7=«k/x,, the thermal Rayleigh number Ra tral space at e_zach |_ter_at|oA;t is cho_sen such that the Cou-
=gaATd% vk, if the temperature is kept constant at the rant criterion is satisfied at each time step. The matrix re-
sidewalls (or Ra=gal|d,To|d* vk, if the thermal flux is 9quired in solving Eq.(2.5 for a given time stepAt is
fixed constant insteagand the solute Rayleigh numbBg _calcul_ated anq sto_red in a preproczessmg rouztlne; thus, solv-
=gBASE vic,=9B|3,S|Hd vk,. [« is the thermal ex- NG this equation mvoIves. pnly)(L M/2+LM_ 12) opera-
pansion coefficient3=(dp/3S)/p, andg is the gravitational tions. The. boundary condltlons for_ eaph varla}ble are incor-
acceleratiorl. For numerical convenience, we scale lengthsPorated in the —spatial discretization using the tau
in the z direction so that lies in[—1, 1], independent of the ~aPProximation[29], where we first project a vector into a

aspect ratioA. We expand the variables in truncated two- Subspace of low-frequency components and solve for their
dimensional Chebyshev polynomials spectral coefficients and then solve for the high-frequency

components through the boundary conditi¢@8]. We de-
LM note this projection operation l,, [22], and as pointed out
f(x,z)=2, > fi;(OTi(X)T;(2), in [22], this operator does not commute with the spatial de-
=010 rivative operato®v. This turns out to be important in imple-
where the spectral coefficients (t) are calculated through menting the influence matrix method to find the incompress-
the cosine transform df(x,z,t) at the Gauss-Lobatto points ible velocity, which is the subject of the following
[29] discussion.
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TABLE I. Summary of the parameters and averaged length scales for the three &asethe angle
between the steady isohaline contours and the horizontal level at the cent@),(6, is the averaged angle
between layers and theaxis (excluding the edge cellsz, is the averaged layer thickness excluding the
edge layersy, is the averaged layer thickness including the edge laygrandA ¢ are the boundary layer
thicknesses determined from the horizontal gradient of temperature and salt, respectively, iarttie
averaged spacing between layers. The unit for the bouyancy freqinisy\/gaAT/d s L. Note thatz,
and », differ appreciably only in the case where buoyancy driving is large, so that the tilting of the edge cells
is substantially greater than that of the interior cells.

R,100 R, Re No 7(d) 6 (deg 6(deg 7o(d) 71(d) N (d) As(d) Xi(d)

Case(l) 0.7 0.29 ~O(10) 7 10/7 56.3 238 097 153 0.2 0.1-02 0.1
Case(2) 1.2 2.75 ~O(10) 12 5/6 36.6 192 040 049 02 0.1-02 0.1
Case(d) 1.5 5.40 ~O(10) 15 4/6 35.2 103 040 047 02 0.1-02 0.1

We use the multidimensional version of the influence maienge is the separation of spatial scales due to the different
trix method to satisfy the divergence-free constrg2®]: we  diffusivities of the diffusive species. Numerically it is not
replace Eq.(2.4) with a Poisson equation for the pressurepossible to carry out computations for arbitrary diffusivity
and solve for the correct pressure that will give us theratios of the two scalar fields. The reason is that the more this
divergence-free velocity. The influence matrix method al-ratio differs from unity, the greater is the disparity between
lows one to find the correct pressure without advance knowlthe characteristic length scales of these two scalar fields;
edge of its boundary conditions; in other words, we look forconsequently, more grid points are needed to resolve the spa-
both the pressure and its correct boundary conditions at thgal structures. However, the heat and mass transfer across a
same time. However, a small error will occur in satisfying diffusive interface are shown in experimef8?] to obey a
V.i=0 if the noncommutation between the two operatorsscaling law as long as the density stratification ratio is above

Qi andV is not taken care of in the implementatif22], a c_ritical \_/alue; no general scal_ing can be founq for stratifi-
independent of the nature of the algorithm for solving for cation ratios less tha_n th_|s cr|t|cal_ v_alue. In this paper we
Kleiser and Schumani21] propose a remedy, called the tau concentrate on qu.ant|t_a7t|ve dgscnpho_ns of Iayer dy_nam|cs;
correction, to remove the error due to this noncommutationthus we adopt a diffusivity ratio of 0.1 in our simulations.
We follow the generalized version of tau correction by Tuck-

erman[22], but introduce a few refinements to her scheme.

The first refinement is the treatment of the boundary condi- ll. CHARACTERISTIC PARAMETERS

tions: we implement the boundary conditions into the La- AND INITIAL STATES

placian operator in spectral space in such a way that this
spectral operator is nonsingular. This significantly reduces
the ambiguity in the calculation of the inverse of the influ- The previous literature of layering in both the laterally
ence matrix, i.e., the determination of null vectors in thethermal driven cases and the turbulently driven cases has
inverted influence matrix. Secondly, we use singular valudntroduced a number of nondimensional parameters, which
decompositior(SVD), instead of eigenvalue decomposition, are very useful in characterizing the physics governing lay-
to calculate the inverse of the influence matrix, and als&fing. In this subsection, we provide a brief summary of
adopt the threshold for the determination of the null vectorghese characteristic parameters.

used by Tuckerman to find the inverse of the influence ma- (1) 7=aAT/B|d,So|. Chen, Briggs, and Wirtg5] intro-

trix from SVD. We have found that, regardless of the timeduced» as a length scale for layer depth, which can also be
step and the number of modes in either direction, we alway§xpressed in terms of our dimensionless parameters,
have eight null vectors for the inverted influence matrix. The=A(Ra/R;). They obtain averaged layer thicknesses in the
calculation of the inverse of the influence matrix is very timerange of 0.6; and 0.9 [5]; Huppert and Turner reported a
consuming due to the complexity of the tau correction inlayer thickness of 0.66 for solute Rayleigh numbeRg
more than one direction, and we have therefore precalculated 10° in similar experiment§33]. This length scale is the
the inverse of the influence matrix for various values of thevertical distance over which the buoyancy due to horizontal

A. Characteristic parameters

time step and stored them for later use. temperature difference is balanced by the stabilizing solute
A number of authors have used the influence matrixgradient. _ . .
method without the tau correctiof23]; Tuckerman ad- (2) R,=gaAT7% vk,. Chen, Briggs, and Wirtz also in-

dressed this poinf22], and Werne[31] shows the impor- troduced a Rayleigh numberR() associated with the
tance of the tau correction. By numerical experimentationjength scale 5, which can also be expressed &3,

we confirm the conclusion if22] that the amplitude of the =(RaRg)°A%Ra, it has a critical value of (1:610%)
divergence is independent of the number of modes used: (2.5x 10%) for the onset of layer instability, which is found
Once we turn off the tau correction, the amplitude of theto be independent of the solute diffusivit]. We remark
divergence of the velocity is £0or more larger than the here thaty is a useful parameter only for layers observed in
corrected one and does not decrease much as we increase the interior because the physical circumstances governing the
number of modegcontrary to the claims if23]). In addition ~ formation of the edge cellgop and bottomare known to be

to the incompressibility constraint, another numerical chal-different than for the interiof4].
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y B FIG. 2. Energy ratid}; [scaled
«” oall . to (RacA/8)] as a function of
a ] time t; times are scaled to the slot
0.06_:5- - thermal diffusion time. The three
i ] panels correspond to the three
0.041- 3 cases discussed in Sec. IVA. The
0.021- = oscillation at the beginning is due
i B to the transient state as we in-
o _'3 "4 stantly turn on the temperatures at
the sidewall. In(a) [case(1)] we
3 ' B ' ' 3 see well-defined peaks beforte
- (o) 3 =0.8, when the first merging oc-
r E curs at the edge cells. These peaks
0.35 -3 correspond to layer formation in
3 the interior. (b) and (c) are the
E corresponding plots for cas€g)
e 0.2 e and (3), respectively. In these two
) B cases, we do not see as many
3 well-defined peaks corresponding
E to cell formation as in the first
0.1 B case. This is because the kinetic
F ] energy of the edge cells increases
. 3 much faster in these two cases,
o" X 3 ; and the ratio drops to small values

f at an early time. Solid dots on
----- — T these curves correspond to the
merging at the edge layer. The
open circle in(a) indicates the in-
terior layer merger. The small os-
cillations around 0.4t<0.6 in
(b) and 0.5<t<0.8 in(c) are due
to the formation and destruction

—
O
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i d
of opposite circulation cellgcir-
culating upward at the cold end
and downward at the hot end
r 3 4
(3) R,=p|d,So|d/aAT. Young and Rosnef12] intro- (4) m3=a|d,T|/B|3,Sy|. Narusawa and Suzukawa stud-

duced the density stratification ratR,(=1/AXRs/Ra) to ied layer formation due to a lateral heat flL8d], and intro-
classify the various regimes in linear stability analysis. Induced the ratior; of the applied constant horizontal heat
summary, the instability is double diffusive and the shearflux to the vertical solute gradient, obtaining a critical value
flow is important only near the boundary f&,>1. ForR,  (0.28 of this ratio for layer formation.

<1, the shear flow is dominant and the instability is shear (5) Ry=a|d,T|/(— ad,To+ B3,Sy). This modification of
induced. ForR,<1 our numerical simulations show cell the flux ratiom; proposed by Schladow, Thomas, and Koseff
structures similar to those in vertical slot convecti@3]: [35] is the ratio of applied heat flux to vertical density gra-
cells are broken up into two pieces, which then move indient. Later Wright and Shyj20] usedR;=1 in their nu-
opposite directions along the boundary currents. We also olmerical simulations and showed that f8f>1 the horizon-
serve that foR,~1 two layers will be sheared horizontally tal intrusion is more dynamic, and merging occurs near the
in opposite directions and then merge to form a bigger cellfront of each layer at an early stage.

In our numerical simulation for the fixed sidewall tempera- (6) R;=(integrated potential energyintegrated kinetic
ture cases, we adopt two values of the Rayleigh numbers ianergy. In all the cases discussed above, the thermal buoy-
the double-diffusive regimeR,=1), and one value in the ancy is the driving force that initiates layer formation. The
shear driven regimeR,<1). Reynolds numbersl/v) are in the range of10, the
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buoyancy frequency  No=(—gd,n7p)**~(Rs/Ra e e
. _ A —— e e ——
X gaAT/d)%®is about 0.8 s for a temperature gradient 0.2 e oA
~ : e A T A e
degcm?, and Rg¢/Ra=10 in water. In these cases layers 30% e e e N
form as a result of buoyancy balance between the destabiliz s\t
ing horizontal thermal gradient and the stabilizing saline gra- “""’..“‘"‘
. . . . AN N ¢
d_|ent. In the st_rongly d_rlven case, where the forcing is pro- Wﬂ;ﬂj\/&w
vided by moving a grid horizontally across the container GRS
[26,24,23, Reynolds numbers are of order several hundred, s

ﬁﬁ

and one observes layer formation as turbulent motions are —_—
maintained by the external forcing. In these cases of stably
stratified turbulent fluids, various Richardson numbers are
used to qualitatively describe the systE®6,37). In our ther-

|

ﬁiiﬁﬁ

iﬁ

mally driven cases, we adopt an integrated ratio, the energy 2.0 ‘ﬁ—"ﬁw-w“m_ﬁ"*‘—w‘w*“z
density ratioR; (similar to the flux Richardson numbeto ; W !
describe the mixing efficiencyR; is defined in Eq.(4.1) ?ﬁ e 8
below. Rather unlike the Richardson nunisgrthe absolute ' = _————

magnitude of this ratio is not related to the appearance ol e e

f?i

Séii%?t%?

|
%

instability that will lead to layer formation, but it is useful as 1.5
an indicator of the mixing efficiency as a function of time.

I

MJ\’&!‘VM

I

|

%%
ff

B. Initial states

g
;%;;

There are various ways to prepare the experiments in the ;4 ==,

li%fﬁ

laboratory. In the case where the sidewall temperatures ar o R T SO R ey
fixed, the desired temperature difference across the walls ca e D esee—————e 1“’:‘5\
be established graduallygradual heating’. Alternatively, éggwﬂm“ﬁ%\
one can fix the sidewall temperatures to the desired value: /%%“Ja ==
virtually instantaneously, and keep them fixed during the 0_5

course of the experimentSimpulsive heating”). Chen and @;

Chen have performed experimen&8] for both cases and %‘:

found results to be similar. Kerr's linear analyses for the =3 ==
impulsive heating caséor large solute Rayleigh numbers

predict a layer thickness and critical temperature difference 0.0 t=——=—=t= == !

close to those for the gradual heating cfb4]. In a subse- -10 -5 g s 10
guent paper he also showed that the bifurcations are subcriti-

cal (for large solute Rayleigh numbgril5], as are those in - FiG, 3. Average buoyancy gradieW,, as a function o and

the gradual heating case. In our simulations, we concentratefor case(1). The dashed lines are fits to the trajectories of the
on the impulsive heating cases: We use the static state Withiﬁ.-moving boundary of the edge cell. They are proportionapﬁ
stabilizing salt gradient as the initial condition and instanta-The solid lines are fits to the trajectories of the outward-moving
neously set the temperatures at the walls to the desired vaboundary of the neighboring cells, soon to be swallowed by the
ues. For the case where the heat flux is fixed instead, thedge cell. They are proportional ta—{t,)5 wheret, is a free
initial state is a static state in the diffusive regif@estably  parameter. These two dashed lines have different proportionalities.
stratified density gradient with solute stabilizing and tem-
perature destabilizingand we instantaneously turn on the weak circulation is found in the interior; the top edge cell
heat flux at one sidewall and keep it fixed for the rest of theforms near the cold wall while the bottom edge cell forms
calculations; this heat flux is assumed to be homogeneous giear the hot wall. The interior circulation is weak as the
the sidewall. isohaline contours adjust to the relaxing temperature profile
and a steady circulation is established before any instability
IV. RESULTS grows. (The circulation at the center of the slot corresponds
to the background state in the linear analyswithin the
edge cell the solute is well mixed and the temperature is
For cases where the sidewall temperature is fixed, threeendered stable. As edge cells grow and advance toward the
sets of Rayleigh numbers are used, and we observe differeiriterior, the vertical thermal and solute gradients are found to
layer dynamics as we change the stratification r&jo In  accumulate at the layer boundaries. Instability in regions
all these computations, we use 49 modes inxhdrection  next to the edge cells is thus initiatédee[13]), and two
and 257 modes in the direction. Att=0" the sidewall cells are found to form simultaneously next to the edge cell.
temperature is impulsively imposed. We recall that time isOf these two cells, the one immediately adjacent to the edge
scaled by the thermal diffusion time across the slot, and theell has opposite circulatiofdownward near the hot wall
time step is usually as small as 10to maintain stability in  and upward near the cold wialio the dominant circulation
the temporal integration. As we turn on the sidewall tem-direction in the slot and soon dies. The other cell, with the
peratures, cells near the ends are observed to form first andsame orientation as the edge célipward near the hot wall

A. Fixed sidewall temperature: A=10, 0=7, and 7=0.1
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FIG. 4. Time-space plot oﬂuoy for case(2). In this case we o

can fit the trajectory of the advancing boundary of the edge cell to  FIG. 5. Time-space plot oV, for case(3). We note that in

the t%° curve only before the first encounter with the neighboring this case the layer dynamics evolves more slowly than in the first

cell. The boxed area is where cells disappear due to the decreasiingo cases. The two boxes enclose regions where cells disappear as

buoyancy gradient; no merger occurs in this region. the buoyancy gradients fail to sustain layer structures. The differ-
ences found in these two regions are discussed in the $ed. .

and downward near the cold wallsurvives and grows in

size and initiates cell formation next to it. This process conform; after layer formation we observe interior cells merging

tinues until layer formation reaches the center. In the interto form a single cell which is twice the size of the original

face regions between the layers, the stabilizing salt gradierine (see Sec. V for detailsIn this case, the calculation is

increases as a result of mixing within cells. The calculationsarried to 3.5 thermal diffusion times. For caggsand (3),

also show that the vertical thermal gradient is rendered deR,>1 and the salt stratification can prevent the vertical

stabilizing in these interfaces while the density is rendereghear from destroying layer structures; calculations are car-

stably stratified. In the following, we shall use the energyried to 4 thermal diffusion times. For water v (

density ratio(similar to the flux Richardson number defined =0.01cnfs ! and v/x,=7) this corresponds to observing

in [26]) to describe the mixing efficiency, and the buoyancythe experiment for 0.5—1.5 h witth=2—-2.5cm.

gradient to describe the layer dynamics. We also present sev- In Table | we list parameters of interest and summarize

eral horizontally averaged quantities as functiong@hdt  the various averaged length scales from the simulations for

for three sets of Rayleigh numbers (Rg), all with A the three cases. We note that the tilting angles are averaged

=H/d=10, =7, and 7=0.1: (1) (RaR.)=(8.6x 10", over all cells except for the top and bottdedge cells in all

6.1x10°), (2) (RaRg)=(1.6x10°,1.92<10°), and (3) cases. In addition to the parameters introduced in Sec. IIl, we

(RaRg)=(1.6x10°,2.4x10°). These parameters corre- also include five length scales and two angles as described in

spond to a temperature differencedt =2°-4° in water if  the table caption.

the width of the slot is abowt=1.9—2.5cm. In the first case We first examine the effect of cell creation and destruc-

(R,=0.7) the boundary currents along the vertical walls aretion on the overall efficiency of convection. To do this, we

strong, and cells are tilted by these boundary currents as thelefine the integrated energy density ratio as
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=)

FIG. 6. Horizontally averaged kinetic energy
density @, solid ling), buoyancy flux §,uey/2,
dash-dotted ling and buoyancy gradien¥(,oy.
dotted ling as functions ofz at eight different
times for casg1). t=0.3, 0.5, 0.7, 1.5, 1.7, 2.0,
2.5, and 3.28 for plot$a)—(h), respectively. The
left ordinate is for bothVy,, and f,/2; the
right ordinate measures the scaled kinetic energy
densitye.

[—gz(—aT+BS)dx dz We utilize horizontally averaged quantities to describe
Ri= T(WZ+w?)dx dz layer dynamics as in[27]. The horizontally averaged

buoyancy gradient(in nondimensional form Vy,q(z,t)
_ RagA 2T~ R./RaS)dx dz 41 =(gaATIAd) ‘g(aT,~ fS)=T,~ (RJ/Ra)S, is a good
8 J(u?+w?dxdz indicator of the layer dynamid®6,27: spikes in the buoy-
ancy gradient vertical profile correspond to layer locations as

where the integral is taken over the whole box. We plotcan be seen in Figs. 3—5 where we ¥g},,(z,t) as a func-
R;/(RacA/8) as a function of time in Figs.(8—2(c) for the  tion of t andz for the three cases. One concern might be that
three cases. We remark that in our simulations, where théhe layer tilting in our case might cause difficulties in defin-
flow is driven by a lateral temperature differenég,can be ing physically meaningful horizontal averages. The reason
very large at the beginning since we start from a virtuallythat layer tilting does not make much of a difference to our
static state where the potential energy is much greater thamrgument is as follows: As we take the horizontal average
the kinetic energy. The inverse B measures the efficiency near a tilted layer boundary, we pick up contributions from
of conversion from potential energy to kinetic energy. Wethe two layers on either side of the boundary. However, the
see thaR; does not vary smoothly in time, and that it varies difference in height due to this tilting never exceédsf the

by orders of magnitude as the potential energy is convertetayer thickness for the internal layers in all cases, so that the
to kinetic energy during layer formation and merging. total contribution from adjacent layers is localized near their
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FIG. 7. Snapshots of kinetic
energy density €, solid ling),
buoyancy flux €py/2, dash-
dotted ling, and buoyancy gradi-
ent (Vpyey, dotted ling as func-
tions of z at eight different times
for case(2). t=0.35, 0.5, 0.7, 1.1,
1.5, 2.2, 2.5, and 3.36 for plots
(@—(h), respectively. Coordinate
axes have the same meaning as in
Fig. 6.

common boundary. Furthermore, the no-flux and no-slipthe evolution of spikes in Fig. 3: @t 0.35, two spikes are
boundary conditions at the sidewalls enhance the peak valuggnerated at= + 8.5, moving toward= *+ 10, respectively.
in the mean buoyancy gradient and buoyancy flux at therhese outward-moving spikes are the retreating ends of the
center of the layer boundaries. Since our argument does netge layer boundaries: as the bottgtop) edge cell ad-
depend on the actual values of the horizontally averagegances on the hafcold) end and retreats on the coltot)
quantities, but instead only on the vertical position of theirend, the neighboring cell is pushed toward the retreating end,
extrema(which are known to mark the boundarieee need  moving downward toward the cold wallipward toward the
only check if the positions of these extrema indeed correhot wall for the top edge céll At t~0.8 (when the outward-
spond to the boundary positions. We have therefore commoving spikes hit the wallthe edge layer completely swal-
pared the position of layers determined from the mean quarows the neighbor cell and continues expanding until it swal-
tities to 2D results from our simulations, and find that thejows another cell at~1.6. These outward-moving spikes
correspondence between the position of the extrema of thellow trajectories proportional ta'>' from t~0.4 to t
mean buoyancy gradient and buoyancy flux and the position- 0.8 (the solid line in Fig. 3. For 0.2<t<0.5 and 0.8t
of the mldelnt of the tilted bOUndary |ayers is excellent. <1.8, the inward_moving Spikes travel a|0ng curves propor-
As shown in[26], merger events are manifested as thetional tot®, denoted by the dashed lines in Fig(sge[27]
“collision” of spikes in Vy,e(z,t). For example, consider for comparison). At t~1.2 we have altogether 14 layers; at
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FIG. 8. Snapshots of kinetic
energy density €, solid ling),
buoyancy flux €py/2, dash-
dotted ling, and buoyancy gradi-
ent (Vpyey, dotted ling for case
(3).t=0.35,0.6,1.5, 2.0, 2.5, 3.0,
3.5, and 3.86 for plot§a)—(h), re-
spectively. Coordinate axes have
the same meaning as in Fig. 6.

t~1.6, the two edge layers swallow their neighbor cellsflux, together with the buoyancy gradient and the average
again to form_ bigger cells, leading to_ 12 cells_; fram 1.7 kinetic energy densitg[z(u2+w2)/2, scaled to (gt/d)Z]
onward merging occurs over the entire contaifterbe de- at eight different times. We note that the buoyancy ﬂTg%y

scribed in Sec. Yand lasts untit~2.5, when only 7 layers h . h he b —-
remain. The edge layers continue to work their way toward ©3ches a minimum wherever the buoyancy gradiéqb,

the center, swallowing the neighboring cells until the end offeaches a maximurtand vice versp and thatfbuoy does not

our calculation. For the other two casgdgs. 4 and 5 the Qo0 to a constant value after the merging, in contrast to the

advancing front of the edge cells follows th®® trajectory  results in[27].

(dashed ling until the edge cells swallow their neighbor  The(dimensionlegssalinity difference across the box and

cells. The outward-moving spikes in these two figuigslid its vertical gradienth(z,t)=(poaAT) 1poBS(x,z,t)|X2t,

curves also follow thet'® trajectory(as in case fLuntil they = (R /Ra)S(x,z,t)|X=1, anda,h(zt), are also good indica-

hit the end walls. o tors of layer boundaries. We show contour plots of both
The average(dimensionless buoyancy flux fy,o(z,t)  h(zt) andd,h(z,t) for the three cases in Figs. 9, 10, and 11,

=(garxAT/d) lg(awT—BwS)=wT—(Rs/RawS is ob-  respectively. As cells develop, the solute is homogenized by

served to have the same layer structures as those of the budie circulation inside the cell and accumulates near the layer

ancy gradient. In Figs. 6—8 we display the average buoyanclgoundaries, where the vertical velocity is zero. In parfals
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FIG. 9. (a) Horizontal salinity differencé¢h) across the box as a
function ofz andt in gray scale for casél). (b) Vertical gradient of
the horizontal salinity differencedgh) for case(1). The gray scale
color tables are shown next to the right ordinate in both panels.

FIG. 10. (a) Horizontal salinity difference across the box as a
function ofz andt in gray scale for casg). (b) Vertical gradient of
the horizontal salinity difference for ca$g). The gray scale color
tables are shown next to the right ordinate in both panels.

of Figs. 9-11, the darker stripes correspond to the layer . )
boundaries and the lighter stripes correspond to circulatioRveraged vertical heat fluxes as functionsz@indt for the
inside the cell where solute is redistributed. First, we notéhree cases, respectively; we scale (denensionlessheat
that att~0.6 in Fig. 9 a horizontal solute gradient is found flux F=UT—VT to the horizontal conductive heat flux
near the center as a steady flow is established in the interiof«;AT/d in this case Initially, the sidewall temperatures are
and h remains constant there until layers form. Second, weset instantaneously to fixed values, and thus heat is trans-
note that the larger the stratification ratio, the longer it takegorted by the interior circulation in the slot. As temperature
for layers to develop and to mix the solute; this effect isrelaxes toward the steady profile in the interiat the center,
evidenced by noting the time it takes for the dark stripes tdhis steady state is the background state in the linear analyses
turn gray. In panelgb) of Figs. 10 and 11, each pair of [12]), the vertical heat flux decreases everywhere except near
adjacent stripegsone lighter and one darkecorresponds to the end walls, where cells grow and the heat flux is enhanced
one layer boundary in the isohaline contour plots: the lighteby convection. A dramatic increase in the amplitude of the
stripe corresponds to the position of the boundary at the hahermal flux is observed as layers merge. This transient be-
wall, while the darker stripe corresponds to the position ofhavior leads to almost an order of magnitude change in the
the boundary at the cold wall. In Fig(l9, the contrast be- heat flux for the edge cells as they swallow the neighbor
tween these two stripes in a pair is not large until mergingecells. As layer formation proceeds toward the center of the
occurs. As cells undergo merging, the solute contrast bebox, the vertical heat flux first increases in amplitude within
comes larger, and thusincreases in amplitude at first. As the cells, oscillates for a while, and then decreases if no
the mixing is enhancedh is homogenizeddecreased in am- merging occurs.
plitude) within the merging cell, and rapidly accumulates We see that most of the heat supplied from the sidewalls
near the layer boundaries; that is why the contrasp bf is advected to the edge celtsonfirming an earlier conjecture
increases after merging. by Thorpe, Hutt, and Soulsi#]) by comparing Fig. 12 with

We next consider the results for heat and solute transporthe temporal evolution of the Nusselt number Nu shown in
In Figs. 12a)-12(c) we show contour plots of horizontally Fig. 13; the latter quantity is just the scaled horizontal heat
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acterized by a stably stratified solute; and Schladow, Tho-
mas, and Koseff35] observed layers when the stabilizing
solute was accompanied by a destabilizing temperature gra-
dient. In order to investigate layer dynamics in this case, we
fix on a particular set of values for the control parameters:
we assume an aspect ratdc=2, a Prandtl numbesr=7, a
diffusivity ratio 7=0.1, (RaRs) =(2.4x 10°,3.2x 10°), and

a constant lateral heat flux, T=249,T, at x=—1, where
d,Tq Is the initial temperature gradient. These choices corre-
spond toR;=2 and m3=1.8 (as defined in Sec. Il The
initial state is assumed to be static, with a destabilizing tem-
perature gradient and a stabilizing solute gradient.

At t=0, the lateral heat flux is turned on and is kept
constant for the rest of the calculation. At onset, cell forma-
tion occurs very quickly. Thus, by the tinte-0.3, we find
that eight dominant cells have already formed, with an aver-
age layer depth of-0.2d. Between these dominant cells we
also observe five smaller counter-rotating cells; some of
these grow for a short while, and three of these decay as cells
of the dominant circulation orientatiaimupward near the hot
wall and downward near the cold walirow. The dominant
cells also evolve: some simply die away, while others merge
as in the case of fixed sidewall temperatures. Thus, near the
end of our simulation, only four dominant cells and two
counter-rotating cells remain, with an average layer depth of
~0.5d.

The evolution of the dominant circulation cells can be
described in more detail as follows. The temperature near the
top wall increases very rapidly from onset, while the tem-
perature near the bottom wall increases much less rapidly. As

t a consequence, the vertical thermal gradient is rendered
) o . . stable over the entire slot iy~ 0.4. During this period, the
l_:IG. 11. Horizontal salinity differencl (a) and its gradien#,h top cell expandsby virtue of the fact that its bottom bound-
(b) in gray sqale for_ cas€). The gray scale color tables are next to ary moves downwaid and the bottom cell contractby vir-
the right ordinates in both panels. tue of the fact that its upper boundary also moves down-
ward); the displacement of the bottom of the top cell scales
flux averaged overz at the hot wall, Ne=J(UT  55¢l (shown as the dashed line in Fig.)16vhile the dis-
—dxT)x-—1dZ/fdz. The salt flux is generally more en- piacement of the top of the bottom cells is much faster, and
hanced than the heat flux when merging occurs, as seen §tgjes agl® (shown as a solid line in the same figur&he
Figs. 148)—14(c): these panels show the horizontally aver-scaling of the top boundary of the bottom cell is thus iden-
aged salt flux=5, scaled to the conductive vertical heat flux tical to that for the outward-moving spikes in the constant
(— k<3, in this casg FS=A(({S/7—VS), as functions of  sidewall temperature case.
andt for the three cases, respectively. In the present case we also see layers merge during this

One notices that after merger events, both the salt angarly period, and also observe decay of cells in the middle of
heat fluxes decrease faster than the kinetic energy flux, d8e simulation domain. Layers merge in similar fashion to
can be seen in temporal and vertical profiles of the horizonthe layer merging seen in the constant sidewall temperature
tally averaged kinetic energy flux shown in Figs.(d5  cases: heavy cells roll on top of light cells, the two merging
15(c). rapidly due to overturn instabilitysee Sec. V.

We also observe oscillations in the heat, salinity, and ki- An important aspect of the constant lateral heat flux case
netic energy fluxes after a layer merger occurs. These oscils that it shows spike collisions that do not correspond to cell
lations are manifested by the alternating colors seen aftgnergers. An example is shown in the boxed area of Fig. 16,
merging events in Figs. 12, 14, and 15. These oscillations ar&hich shows the collision of two spikes, leading to the gen-
closely related to thermal waves seen to propagate from orration of a single spike. Examination of the temporal evo-
sidewall to the other near the top and bottom of the newhjution of either the flow field or the salinity differend¢eand
formed cells after merger. its vertical gradient,h (shown in Fig. 17 shows that this
spike collision corresponds to the decay of a cell, together
with the growth of an adjacent cell into the space vacated by
the decaying cell: no cell merger is involved. Thus, figures

Narusawa and SuzukaWa4] observed layer formation as such as Fig. 16 are insufficient by themselves to distinguish
a constant lateral heat flux is applied to a body of fluid charbetween cell mergers, and cell death and growth.

B. Constant lateral heat flux: A=H/d=2, o=7, and 7=0.1
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FIG. 12. Horizontally averaged vertical heat
flux F, as a function o andt for the three aspect
ratio 10 casesfa)—(c), respectively. The gray
scale color tables foF, are shown next to the
right ordinates. We observe a drastic change in
the amplitude ofF, as two cells merge in all
three cases.

t

Finally, examination of the kinetic energy densitg){  well to represent the layer structures because the tilting does
three horizontally averaged vertical f|uxd§Z( E; andf_e), not affect the correspondence in vertical location between the

buoyancy gradientibuoy) and buoyancy ﬂubeuoy) shows €xtremain th_e ho_nzontally averaged qua_ntities and the layer
very similar behavior to that observed in the constant sigePeundary midpoints. Through the horizontally averaged

wall temperature case: we see bursts and subsequent oscilgfuation for the kinetic energy density and global energy

tions in the vertical fluxes as two cells merge; and that thé@lance equation in our case, we relate our system to Balm-
buoyancy flux is not spatially uniforrfin Fig. 7) after cell ~ forth, Smith, and Young's mod¢27] for layering in the case

merger. of stirred stably stratified fluidg26,25,31.
In order to understand the processes leading to layering,
V. DISCUSSION AND SUMMARY we first develop the horizontally averaged equation for the
_ _ buoyancy. If we define the dimensionless buoyatsnaled
A. Layer formation and dynamics by gaAT/2) by b=T—(Rs/Ra)S, average Egs(2.2) and

In this section, we focus on the layer dynamics via the(2.3) over x, multiply the averaged Ed2.3) by R;/Ra, and
horizontally averaged equations for the buoyancy. We resubtract the resultant equation from the averaged(£@),
mark again that, though the mean quantities have contribuse obtain the horizontally averaged equation for the buoy-
tions from both cells across the tilted boundaries, they servancy,
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AR L LR R R LR a perturbing force Rg/Ra>1), layers remain steady if the

I ] flow within cells reaches a steady pattern. However, in the
case of small stratification ratioR(<1), the newly formed
layers cannot reach a steady state due to the strong vertical
boundary currents; as a consequence of the boundary cur-
rents, these cells move upward at the hot wall and downward
at the cold wall, and we observe formation of separatrixes in
the interior cell circulation(a higher mode in thex
direction—each cell subsequently breaks into two small
subcells, moving in opposite directions along the vertical
shear flow. Still later we observe cell deformation, interior
mergers, and formation of bigger cells as described in Sec.
V B. The evolution of the edge cells is also a case in which
steady state cannot be reached, evenRgiRa>1. In this
case, the cell neighboring the bottom edge cell constantly
advects solute toward the edge c@h analogous process
happens at the tgpthis advection accelerates the edge cell’'s
circulation (because it converts potential energy to kinetic
energy, and leads to an upward extension of the upper
boundary of the edge cell, i.e., the edge cell grows in size.
Thus the buoyancy flux provides “momentum flux” for the
edge cells to propagate toward the center.

In the case of constant lateral heat flux, we observe simi-
lar layer dynamics: the contribution from the constant lateral
heat flux initiates layer formation, and more solute accumu-
lates near the cell boundary as cells develop. However, in
this case, all the cell boundaries propagate downward and the
temperature rises much faster at the top than at the bottom.

There are two important key features in the flux-gradient
relation in Balmforth’s model:(1) the buoyancy flux in-

- 1 creases once the buoyancy gradient becomes sufficiently

ol o b L o large, which captures the steepening of the interface;(2nd

© ! f 3 4 there exists an intermediate range of buoyancy gradients for
which the flux decreasdmcreasepas the gradient increases

FIG. 13. Vertically averaged Nusselt number Ravaluated at  (decreases which mathematically well poses the model.
the hot wall,x=—1) as a function of time. Solid line: cas®);  From our numerical simulations the buoyancy flux-gradient
dotted line: cas€2); dash-dotted line: cad8). We observe that Nu  jenendence in our case can be summarized as follows: First,

increases rapidly whenever layer merger occurs. . . —
pIey Y g we found that for both interior and edge celtg,q, is not a

. . 1 _ single-valued function oV, as in[27]. The multivalued-
dib+ Kﬁz fbuoyZKﬁszuoer% &leiil_l ness seen in our results may be due to the fact that different
regions in the cells undergo different instabilities. Second,
S o= we also observe a range of buoyancy gradients for which
+ R_a(l_T)ﬁ‘?zs* (5.9) layer-forming instability occurs £ <0 in [27], where the
buoyancy flux decreases as the buoyancy gradient incieases
Wheref_buoy and ?buoy, as defined in Sec. IV, are the buoy- Third, therg exists a range of vaIL_Jes for the buoyancy gradi-
ancy flux and buoyancy gradient, respectively. Equatiorent for which the buoyancy flux increases as the buoyancy
(5.1) can be used to understand much of the dynamics ofradient increase@s long as both are sufficiently laggehis
layer formation and evolution. The effect of different diffu- range is larger for the edge cells than for the interior cells,
sivities is manifested by the last term on the right-hand sidévhich may explain why the edge cells keep advancing to-
of this equation: it vanishes if=1, and for cases of interests Ward the interior.
(7<1; in our simulations7y=0.1), (1~ 7)~1. The net hori-  Finally, we note that the arguments presented for layering
zontal heat fluxa, T|X=1, is the driving force. As the linear 1N Stirred stably stratified fluids bj27] carry through even
instability sets in, the horizontal thermal gradient builds up aM°reé extensively than might be expected by comparison of

. . our Eq.(5.1) (on which our above discussion of layering is
buoyancy fluxfy,,, and a vertical buoyancy gradient accu- based and Eq.(2.13 of Balmforth, Smith, and Young27]:
mulates near the horizontal interfaces between cells as a re- N ' ' )

. — ﬁ1deed, we can derive equations for the horizontally aver-
sult of the flow pattern in the cell. As long a1, Vyyoyand - 5ged kinetic energy density and a global energy equation
42S soon dominate the right-hand side as the staircase strusimilar to Egs.(2.1b and (2.2) of [27]. For example, we

tures form. Since in our case the temperature serves only aferive the equation for the horizontally averaged kinetic en-
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FIG. 14. Horizontally aver-

aged vertical salt quxE§ as a
function of z and t for the three
aspect ratio 10 cas¢&), (b), and

(c)]. The gray scale tables fd#;
are shown next to the right ordi-
nates. We observe more oscilla-
tions in the interior when cells
form in case(1) (fromt=0.5 tot
=1.2). These interior oscillations
are associated with the wobbling
observed in the streamlines. As
the stratification ratio is increased
(R,) in cases(2) and (3), we see
lower-amplitude oscillationgand
hence less wobbling in the stream-
lines). This oscillation is respon-
sible for the tilting of the cellgin

all three cases and is closely re-
lated to the later interior cell
merger in casél) (for details, see
Sec. ). We also observe oscilla-
tions in the edge cells after merg-
ing (Sec. V.

&

ergy density[e scaled by (%,/d)?] by taking the inner The equation for the global energy balance of the system
product of Eq.(2.1) with G and averaging the result over  can be derived by combining Eg&.1) and(5.2) to obtain

obtaining the nondimensional result
1 Rao
1 (o —  ——\ oRa-
8= 4 o 7 I~ WP=20UdW | + — o fruey— 02, o”tJ_l(e szb)dz

(5.2 .
[RaT Re7S]2Zt - J oQ?dz
whereP is the pressure in Eq2.1) andQ=4d,u—d,w is the -t
vorticity. [Note that we have assumed incompressibility, no- 1 Raog zd,T|X x——l

slip boundary conditions for the velocity, and no-flux bound- - f A——1rm 6 2

ary conditions for the solute in the derivations of E¢f%1) -1
and(5.2); we further note that we can obtain the same equa-
tions if the no-slip boundary conditions at the sidewalls argn the derivation of this energy balance equation, the term
replaced by stress-free boundary conditipns. (1/A) 9, fbuoyln Eqg. (5.1 cancels with ¢ Ra/16)fbuoy|n Eq.

(5.3
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FIG. 15. Horizontally averaged

vertical kinetic energy flux f
=w(u?+w?)/2) as a function o andt
for the three aspect ratio 10 cades),
(b), and(c)]. The gray scale tables fdy,
are shown next to the right ordinates. We
observe oscillations in the edge cells af-
ter merging.

(5.2; we obtain the prefactor of the potential energy terin  length ande is a nondimensional mixing-length parameter
in the above integral by dividing Ad/2)gaAT/2 by related to the stratification strength in the formulation of
(2k,/d)2. This equation thus balances the rate of change of27]). In Egs. (5.2) and (5.3), the kinetic energy diffuses
the total energy of the systefthe term on the left-hand side through viscous dissipation and hence the coefficiéiotd
of Eq. (5.3)] with the total potential energy available in the viscosity scaled to thermal diffusivityis a constant in front
system (the first term on the left-hand sigethe (always of the vorticity term.(In contrast, in the cases of stratified
negative energy dissipation rate associated with vorticity turbulent fluids, one adopts eddy viscosity for this kinetic
generation, andfinally) the net lateral heat flux, which is the energy dissipation term because the characteristic length
source and sink of the total energy and thus is the externalcale of the average kinetic energy is determined by both the
driver of this system(Note that the adopted boundary con- length scale of the stirring device and the stratificadion.
ditions do not allow kinetic energy and buoyancy to enter or Thus, we see that our horizontally averaged equations are
leave the system via the end walls. virtually identical to those of Balmforth, Smith, and Young
Equationg5.2) and(5.3) resemble the corresponding Egs. [27], with the principal difference lying in the nature of the
(2.13, (2.1b, and(2.2) in [27] if we identify the vorticity  forcing: in our case, the motions are buoyancy driven,
term with the turbulent energy dissipation teeit 'e2 on  whereas in their case, motions are driven by external forcing.
the right-hand side of Eq2.9b in [27] (I is the mixing  Thus, while the mixing lengtffl) is determined by both the



PRE 61 NUMERICAL SIMULATION OF DOUBLE-DIFFUSIVE . .. 2691

: T
ETTEEEETE IR TN AN

-1 0 1 2 FIG. 17. (a) Salinity difference(h) across the box for the con-
Z stant lateral heat flux case. Again, dark stripes correspond to layer
. boundaries, where both horizontal salinity difference and its gradi-
FIG. 16. Time-space plot oV, for the constant lateral heat ent accumulate(b) d,h as a function ot andz
flux case. The dashed line traces the trajectory of the layer boundary
of the top cell; unlike the®Sfit in the constant sidewall temperature ~ During the merging of two layers, we observe hot and
cases, here the fit is proportionalttdhe solid line shows the->fit ~ salty fluid sinking as cold and fresh fluid floats up near the
to the trajectory of the outward-going spike. Within the box aroundcenter of the merging site. As two cells merge, the lower
z=—0.6 a cell decays as another cgroundz=—0.3) grows. At  (heaviei cell moves upward, turns over, and lies on top of
t=1.2 a cell grows around=—0.2; it is soon swallowed by the the upper(lighter) cell. As a result, the density is unstably
cell it grows in. We also note the wavy behavior¥j,,, in the top  stratified (top heavy, the fluid undergoes Rayleigh-Taylor
cell (1.2<z<2.0). instability, and potential energy is converted to kinetic en-
ergy in a burstlike fashion. Due to this potential energy re-
stirring device and the stratification [27], in our case the lease, more slat is advected as the cell circulation speeds up.
corresponding scale length emerges from the linear stabilityWe note in passing that in our simulations, the density is
Nevertheless, their physical argumefrtsated to the balance never rendered stably stratified after two vertical cells inter-
between the buoyancy gradient and the buoyancy 8eem change positions, so that we do not expect finger instability
to carry over to our problem, and can provide a physicako set in to enhance the transport of both salt and heat, as
explanation for the observed layering under these apparent§een by Lambert and Demenk9].)
very different physical circumstances. Figures 18 and 19 show a series of pictures as merging of
two layers takes place. For edge cell mergifgy. 18), the
advancing layer boundaries directly cause merging: The
horizontal temperature difference causes the edge layer
In this section, we provide a factual description of cell boundary to tilt as it grows; for the top edge cell, the advanc-
merger and decay, focusing on the physical circumstanceag end is along the cold wall where circulation moves to-
that appear to control merger and decay. We confine ouward the center and the retreating end is along the hot wall,
discussion to the constant boundary temperature case, fand vice versa for the bottom edge cell. As the boundary
which the aspect ratio is 10. tilts, the neighboring cell is squeezed toward the retreating

o

N

B. Merging and decay of cells
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FIG. 18. Time series of the top edge cell merging with the  FIG. 19. Time series of interior cells mergin@ and (b) are
neighbor cell.(a) and (b) are gray scale contours of the stream gray scale contours of the stream functiéc), and (d) are isother-
function, (c) and (d) are isothermal contours, ar(d) and (f) are  mal contours, an¢e) and(f) are isohaline contours. For each box in
isohaline contours. For each box in the panels, the widthasd  the panels, the horizontal dimensiordisind the vertical dimension

the height is approximately 26(this aspect ratio is the same in all s approximately 2.6. As in Fig. 18, white is hot and heavy, and
the plotg. In this gray scale representation, white is hot and heavydark is cold and fresh.
and dark is cold and fresh. We can see that the neighbor cell moves

toward the retreating end of the edge layer boundaryi this neig.hbqlhey develop. As the wobbling initiates instability in the
cell becomes hottetwhite) as it moves up. Because it is heavier pqrizontal direction, we observe formation of separatrixes in
(white), it sinks as it reaches the cold wall. the streamlines in the cells. Two small subcells are found in
the interior cells, circulating in the same orientation. These
end of the edge cell, and these two cells merge as soon @awo small cells have the same solute concentration but dif-
part of the well-mixed heavier cell lies on top of the lighter ferent temperature distribution. As these two closed subcells
cell [40-42. form, the layer boundaries of these interior cells tilt upward
For interior layer mergingFig. 19, numerical simulation at the hot end and downward at the cold end, and one of the
shows that the stratification ratio plays an important role. Asubcells dies as the other keeps expanding. As one of the
the interior cells grow, we observe oscillation of the cells insubcells grows at one end, the lower and upper neighbor
the horizontal direction. This oscillatiofwvobbling) subsides  cells are forced to expand at the opposite end. As the dying
as the cell expands and homogenizes the horizontal tempersdbcells vanish, a pair of interior neighbor cells begin to
ture and saline gradients. If the solute stratification is larganove toward each other: the upper cell moves downward
(R,=1), the interior layers remain steady after the wobblingand the lower cell moves upward. Soon these two cells
ceases. In cas¢®) and(3) (R,>1) some layers disappear as (growing in size at different englscirculate around each
nearby cells have larger buoyancy gradiefaisd thus more other. Overturn instability occurs as the heavier cell is
robust layer structur@gsThese disappearing “weak” layers dragged on top of the lighter one by the boundary shear flow.
(with weak buoyancy gradients to sustain the layer boundPotential energy is released as the top-heavy cell sinks down,
arie9 decay as the nearby cells expand with well-defined celand a large cell of twice the size of the original cell is
structure; no merging occurs in these case® the boxes in formed. The generation of separatrixes of the streamlines in
Figs. 3-5. However, for case 1 where the stratification ratiothe interior cells may be due to the instability of higher
R,<1, the wobbling serves to seed the instability of higher-modes in thex direction, initiated by the wobbling of the
order modes in the interior flow. Thus, the evolution of inte-streamlines. We also observe separatrix formation in cases
rior layers is as follows: First we observe cells to wobble aswvhere the instability is shear driveR(<1). In those cases,
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each interior cell is torn into two cells and moves along theplace and the potential energy is released in a bursty manner.
boundary currents. Thus this kind of merging process is noFor R,>1, we observe layers to decay as the neighbor cells
seen when the stratification ratio is large,&>1), where the ~expand and no interior merging is observed throughout the
shear flow is much weaker near the boundary and the instaomputation.
bility is double diffusive in nature. We have described layer dynamics via the use of horizon-
Finally, we comment on the decay of cells, as observed irtally averaged variables. For example, the layer boundaries
cases(2) and (3) for aspect ratio 10. The boxes shown in are manifested by spikes in the mean buoyancy gradients. By
Figs. 4 and 5 are regions where decay of interfaces occursomparing the mean buoyancy gradient with the two-
Two cells form almost simultaneously a=-0.5 and dimensional stream functions, we are able to distinguish col-
z=—1.0, respectively, arount1.3 (Fig. 4. The one near lision of spikes in the mean buoyancy associated with merger
the center has larger buoyancy gradient to start with, an@vents from those due to the decay and expansion of cells.
keeps expanding as the neighbor cell decays. This is illusWe also applied arguments for layer formation[27] (the
trated as the breakup of a weak spike into smaller ones aloritpx-gradient relationsto our cases, and found some simi-
the dashed lines in the box in Fig. 4. In cd8¢ (Fig. 6) we larities as well as differences. In all the cases, the edge cells
observe a similar occurrence of layer decays in the box nea@xpand toward the center of the box in a similar fashion to
z=—3.5. However, in the box close o= —6.5 the decay- that found in[27]. This similarity in behavior may be due to
ing spike on the right does not break into small spikes, buthe similarity in the equations describing the averaged vari-
instead decays while the left spike increases its amplitude aables and the fact that identical vertical boundary conditions
a result. In Fig. 16 we observe two spikes colliding atwere adopted for the buoyancy gradient and kinetic energy
z=—0.5 around=1.1; however, this is not a merger event. density gradient. From the evolution of the heat transport we
The cell at z=—0.2 expands faster than the one atconclude that most of the heat flux applied to the sidewalls to
z=—0.6, which eventually decays as the cellat —0.2  maintain the constant sidewall temperatures goes to the edge
keeps expanding. cells, confirming a previous conjecture by Thorpe, Hutt, and
Soulsby[4].
C. Summary Finally, we have also simulated the constant lateral flux
) ) o . case, and have found that, except for the fact that there is a
We have simulated vertical double-diffusive convectlor_wpreferred direction for the layers to propagate due to the

in a confined, elongated container. We start with a stati¢ncreasing vertical thermal gradient, the layer dynamics and
initial state with a stably stratified solute gradient; the sideyng transport of heat and solute are similar to those in the
wall temperature is then turned on impulsively at the begintase of constant sidewall temperature.

ning of the calculation. We have performed three sets of
simulations for the constant sidewall temperature, aspect ra-
tio 10 cases, and concluded that the stratification rekig) (

is important in characterizing the interior layer dynamics. We would like to thank N. Balmforth, J. Biello, F. Catta-
For R,<1, the tilting of the interior layer boundaries is neo, T. Dupont, K. Julien, N. Lebovitz, L. Tuckerman, J.
strong enough to deform the cells into two subcells. TwoWerne, and W. Young for helpful conversations. This work
neighbor cells merge as the heavier subcell lies on top of thevas supported by the NASA Space Physics Theory Program
lighter one. During the merging, overturn instability takesand DOE/ASCI Center grants at the University of Chicago.
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